Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Proc Natl Acad Sci U S A ; 107(15): 6771-6, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20348418

ABSTRACT

The C-terminal segment of the human insulin receptor alpha-chain (designated alphaCT) is critical to insulin binding as has been previously demonstrated by alanine scanning mutagenesis and photo-cross-linking. To date no information regarding the structure of this segment within the receptor has been available. We employ here the technique of thermal-factor sharpening to enhance the interpretability of the electron-density maps associated with the earlier crystal structure of the human insulin receptor ectodomain. The alphaCT segment is now resolved as being engaged with the central beta-sheet of the first leucine-rich repeat (L1) domain of the receptor. The segment is alpha-helical in conformation and extends 11 residues N-terminal of the classical alphaCT segment boundary originally defined by peptide mapping. This tandem structural element (alphaCT-L1) thus defines the intact primary insulin-binding surface of the apo-receptor. The structure, together with isothermal titration calorimetry data of mutant alphaCT peptides binding to an insulin minireceptor, leads to the conclusion that putative "insulin-mimetic" peptides in the literature act at least in part as mimics of the alphaCT segment as well as of insulin. Photo-cross-linking by novel bifunctional insulin derivatives demonstrates that the interaction of insulin with the alphaCT segment and the L1 domain occurs in trans, i.e., these components of the primary binding site are contributed by alternate alpha-chains within the insulin receptor homodimer. The tandem structural element defines a new target for the design of insulin agonists for the treatment of diabetes mellitus.


Subject(s)
Peptides/chemistry , Receptor, Insulin/metabolism , Animals , Binding Sites , CHO Cells , Calorimetry/methods , Cricetinae , Cricetulus , Cross-Linking Reagents/chemistry , Crystallography, X-Ray/methods , Dimerization , Drug Design , Humans , Models, Molecular , Molecular Conformation , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, Insulin/agonists
2.
J Biol Chem ; 285(40): 30989-1001, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20663888

ABSTRACT

Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (Phe(B1) in placental mammals) is variably positioned within crystal structures and exhibits (1)H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1-B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with ß-cell dysfunction and neonatal diabetes mellitus.


Subject(s)
Models, Chemical , Proinsulin/chemistry , Protein Folding , Amino Acid Substitution , Crystallography, X-Ray , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mutation, Missense , Nuclear Magnetic Resonance, Biomolecular , Proinsulin/genetics , Proinsulin/metabolism , Protein Multimerization , Protein Structure, Tertiary
3.
J Biol Chem ; 285(7): 5040-55, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19959476

ABSTRACT

Proinsulin exhibits a single structure, whereas insulin-like growth factors refold as two disulfide isomers in equilibrium. Native insulin-related growth factor (IGF)-I has canonical cystines (A6-A11, A7-B7, and A20-B19) maintained by IGF-binding proteins; IGF-swap has alternative pairing (A7-A11, A6-B7, and A20-B19) and impaired activity. Studies of mini-domain models suggest that residue B5 (His in insulin and Thr in IGFs) governs the ambiguity or uniqueness of disulfide pairing. Residue B5, a site of mutation in proinsulin causing neonatal diabetes, is thus of broad biophysical interest. Here, we characterize reciprocal B5 substitutions in the two proteins. In insulin, His(B5) --> Thr markedly destabilizes the hormone (DeltaDeltaG(u) 2.0 +/- 0.2 kcal/mol), impairs chain combination, and blocks cellular secretion of proinsulin. The reciprocal IGF-I substitution Thr(B5) --> His (residue 4) specifies a unique structure with native (1)H NMR signature. Chemical shifts and nuclear Overhauser effects are similar to those of native IGF-I. Whereas wild-type IGF-I undergoes thiol-catalyzed disulfide exchange to yield IGF-swap, His(B5)-IGF-I retains canonical pairing. Chemical denaturation studies indicate that His(B5) does not significantly enhance thermodynamic stability (DeltaDeltaG(u) 0.2 +/- 0.2 kcal/mol), implying that the substitution favors canonical pairing by destabilizing competing folds. Whereas the activity of Thr(B5)-insulin is decreased 5-fold, His(B5)-IGF-I exhibits 2-fold increased affinity for the IGF receptor and augmented post-receptor signaling. We propose that conservation of Thr(B5) in IGF-I, rescued from structural ambiguity by IGF-binding proteins, reflects fine-tuning of signal transduction. In contrast, the conservation of His(B5) in insulin highlights its critical role in insulin biosynthesis.


Subject(s)
Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/pharmacology , Insulin/chemistry , Insulin/pharmacology , Animals , Cell Line , Circular Dichroism , Disulfides , Glycosylation , Humans , Insulin/chemical synthesis , Insulin-Like Growth Factor I/chemical synthesis , Magnetic Resonance Spectroscopy , Mice , Phosphorylation/drug effects , Proinsulin/biosynthesis , Proinsulin/genetics , Proinsulin/metabolism , Protein Folding , Protein Stability , Signal Transduction/drug effects , Structure-Activity Relationship
4.
J Biol Chem ; 285(16): 11755-9, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20181952

ABSTRACT

Bottom-up control of supramolecular protein assembly can provide a therapeutic nanobiotechnology. We demonstrate that the pharmacological properties of insulin can be enhanced by design of "zinc staples" between hexamers. Paired (i, i+4) His substitutions were introduced at an alpha-helical surface. The crystal structure contains both classical axial zinc ions and novel zinc ions at hexamer-hexamer interfaces. Although soluble at pH 4, the combined electrostatic effects of the substitutions and bridging zinc ions cause isoelectric precipitation at neutral pH. Following subcutaneous injection in a diabetic rat, the analog effected glycemic control with a time course similar to that of long acting formulation Lantus. Relative to Lantus, however, the analog discriminates at least 30-fold more stringently between the insulin receptor and mitogenic insulin-like growth factor receptor. Because aberrant mitogenic signaling may be associated with elevated cancer risk, such enhanced specificity may improve safety. Zinc stapling provides a general strategy to modify the pharmacokinetic and biological properties of a subcutaneous protein depot.


Subject(s)
Insulin/analogs & derivatives , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Delayed-Action Preparations , Drug Design , Humans , Insulin/administration & dosage , Insulin/chemical synthesis , Insulin/chemistry , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Engineering/methods , Protein Structure, Secondary , Rats , Static Electricity , Zinc/chemistry
5.
J Biol Chem ; 285(14): 10806-21, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20106984

ABSTRACT

Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.


Subject(s)
Amyloid/chemistry , Diabetes Mellitus, Experimental/metabolism , Drug Design , Insulin/chemistry , Insulin/pharmacology , Amyloid/metabolism , Animals , Antibiotics, Antineoplastic/toxicity , Crystallography, X-Ray , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Humans , Magnetic Resonance Spectroscopy , Male , Protein Structure, Secondary , Rats , Rats, Inbred Lew , Receptor, IGF Type 1/metabolism , Streptozocin/toxicity
6.
Diabetes ; 53(6): 1599-602, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15161767

ABSTRACT

Mutations in human insulin cause an autosomal-dominant syndrome of diabetes and fasting hyperinsulinemia. We demonstrate by residue-specific photo cross-linking that diabetes-associated mutations occur at receptor-binding sites. The studies use para-azido-phenylalanine, introduced at five sites by total protein synthesis. Because two such sites (Val(A3) and Phe(B24)) are largely buried in crystal structures of the free hormone, their participation in receptor binding is likely to require a conformational change to expose a hidden functional surface. Our results demonstrate that this surface spans both chains of the insulin molecule and includes sites of rare human mutations that cause diabetes.


Subject(s)
Diabetes Mellitus/genetics , Insulin/genetics , Insulin/metabolism , Mutation , Receptor, Insulin/metabolism , Azides , Binding Sites/genetics , Humans , Insulin/chemistry , Molecular Structure , Phenylalanine/analogs & derivatives
7.
J Mol Biol ; 341(2): 529-50, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15276842

ABSTRACT

Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.


Subject(s)
Amino Acid Substitution/genetics , Insulin/chemistry , Insulin/metabolism , Peptide Fragments/chemistry , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Alanine , Amino Acid Sequence , Binding Sites , Circular Dichroism , Humans , Insulin/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Structure-Activity Relationship , Valine
8.
J Biol Chem ; 284(21): 14597-608, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19321435

ABSTRACT

Proteins evolve in a fitness landscape encompassing a complex network of biological constraints. Because of the interrelation of folding, function, and regulation, the ground-state structure of a protein may be inactive. A model is provided by insulin, a vertebrate hormone central to the control of metabolism. Whereas native assembly mediates storage within pancreatic beta-cells, the active conformation of insulin and its mode of receptor binding remain elusive. Here, functional surfaces of insulin were probed by photocross-linking of an extensive set of azido derivatives constructed by chemical synthesis. Contacts are circumferential, suggesting that insulin is encaged within its receptor. Mapping of photoproducts to the hormone-binding domains of the insulin receptor demonstrated alternating contacts by the B-chain beta-strand (residues B24-B28). Whereas even-numbered probes (at positions B24 and B26) contact the N-terminal L1 domain of the alpha-subunit, odd-numbered probes (at positions B25 and B27) contact its C-terminal insert domain. This alternation corresponds to the canonical structure of abeta-strand (wherein successive residues project in opposite directions) and so suggests that the B-chain inserts between receptor domains. Detachment of a receptor-binding arm enables photo engagement of surfaces otherwise hidden in the free hormone. The arm and associated surfaces contain sites also required for nascent folding and self-assembly of storage hexamers. The marked compression of structural information within a short polypeptide sequence rationalizes the diversity of diabetes-associated mutations in the insulin gene. Our studies demonstrate that photoscanning mutagenesis can decode the active conformation of a protein and so illuminate cryptic constraints underlying its evolution.


Subject(s)
Insulin/chemistry , Light , Receptor, Insulin/chemistry , Allosteric Regulation/drug effects , Allosteric Regulation/radiation effects , Amino Acid Sequence , Animals , Chymotrypsin/metabolism , Cross-Linking Reagents/pharmacology , Humans , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Peptide Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Sus scrofa
9.
J Biol Chem ; 284(21): 14586-96, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19321436

ABSTRACT

A central tenet of molecular biology holds that the function of a protein is mediated by its structure. An inactive ground-state conformation may nonetheless be enjoined by the interplay of competing biological constraints. A model is provided by insulin, well characterized at atomic resolution by x-ray crystallography. Here, we demonstrate that the activity of the hormone is enhanced by stereospecific unfolding of a conserved structural element. A bifunctional beta-strand mediates both self-assembly (within beta-cell storage vesicles) and receptor binding (in the bloodstream). This strand is anchored by an invariant side chain (Phe(B24)); its substitution by Ala leads to an unstable but native-like analog of low activity. Substitution by d-Ala is equally destabilizing, and yet the protein diastereomer exhibits enhanced activity with segmental unfolding of the beta-strand. Corresponding photoactivable derivatives (containing l- or d-para-azido-Phe) cross-link to the insulin receptor with higher d-specific efficiency. Aberrant exposure of hydrophobic surfaces in the analogs is associated with accelerated fibrillation, a form of aggregation-coupled misfolding associated with cellular toxicity. Conservation of Phe(B24), enforced by its dual role in native self-assembly and induced fit, thus highlights the implicit role of misfolding as an evolutionary constraint. Whereas classical crystal structures of insulin depict its storage form, signaling requires engagement of a detachable arm at an extended receptor interface. Because this active conformation resembles an amyloidogenic intermediate, we envisage that induced fit and self-assembly represent complementary molecular adaptations to potential proteotoxicity. The cryptic threat of misfolding poses a universal constraint in the evolution of polypeptide sequences.


Subject(s)
Evolution, Molecular , Insulin/chemistry , Insulin/metabolism , Protein Folding , Amino Acid Sequence , Amyloid/drug effects , Amyloid/radiation effects , Amyloid/ultrastructure , Cross-Linking Reagents/pharmacology , Humans , Insulin/analogs & derivatives , Light , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Phenylalanine/metabolism , Protein Folding/drug effects , Protein Folding/radiation effects , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Solutions , Stereoisomerism
10.
J Biol Chem ; 283(30): 21198-210, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18492668

ABSTRACT

The zinc insulin hexamer undergoes allosteric reorganization among three conformational states, designated T(6), T(3)R(3)(f), and R(6). Although the free monomer in solution (the active species) resembles the classical T-state, an R-like conformational change is proposed to occur upon receptor binding. Here, we distinguish between the conformational requirements of receptor binding and the crystallographic TR transition by design of an active variant refractory to such reorganization. Our strategy exploits the contrasting environments of His(B5) in wild-type structures: on the T(6) surface but within an intersubunit crevice in R-containing hexamers. The TR transition is associated with a marked reduction in His(B5) pK(a), in turn predicting that a positive charge at this site would destabilize the R-specific crevice. Remarkably, substitution of His(B5) (conserved among eutherian mammals) by Arg (occasionally observed among other vertebrates) blocks the TR transition, as probed in solution by optical spectroscopy. Similarly, crystallization of Arg(B5)-insulin in the presence of phenol (ordinarily a potent inducer of the TR transition) yields T(6) hexamers rather than R(6) as obtained in control studies of wild-type insulin. The variant structure, determined at a resolution of 1.3A, closely resembles the wild-type T(6) hexamer. Whereas Arg(B5) is exposed on the protein surface, its side chain participates in a solvent-stabilized network of contacts similar to those involving His(B5) in wild-type T-states. The substantial receptor-binding activity of Arg(B5)-insulin (40% relative to wild type) demonstrates that the function of an insulin monomer can be uncoupled from its allosteric reorganization within zinc-stabilized hexamers.


Subject(s)
Insulin/chemistry , Insulin/genetics , Mutation , Allosteric Site , Arginine/chemistry , Circular Dichroism , Crystallography, X-Ray/methods , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular , Molecular Conformation , Protein Binding , Static Electricity , Zinc/chemistry
11.
J Biol Chem ; 283(21): 14703-16, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18332129

ABSTRACT

Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 +/- 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (DeltaDeltaG(u) = 0.7 +/- 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 +/- 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts Val(A3) at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 alpha-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world.


Subject(s)
Drug Design , Insulin/analogs & derivatives , Insulin/chemical synthesis , Amino Acid Sequence , Circular Dichroism , Cross-Linking Reagents/chemistry , Humans , Insulin/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Spectrophotometry, Infrared , Thermodynamics
12.
J Biol Chem ; 281(34): 24900-9, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16762918

ABSTRACT

How insulin binds to the insulin receptor has long been a subject of speculation. Although the structure of the free hormone has been extensively characterized, a variety of evidence suggests that a conformational change occurs upon receptor binding. Here, we employ chiral mutagenesis, comparison of corresponding d and l amino acid substitutions, to investigate a possible switch in the B-chain. To investigate the interrelation of structure, function, and stability, isomeric analogs have been synthesized in which an invariant glycine in a beta-turn (Gly(B8)) is replaced by d- or l-Ser. The d substitution enhances stability (DeltaDeltaG(u) 0.9 kcal/mol) but impairs receptor binding by 100-fold; by contrast, the l substitution markedly impairs stability (DeltaDeltaG(u) -3.0 kcal/mol) with only 2-fold reduction in receptor binding. Although the isomeric structures each retain a native-like overall fold, the l-Ser(B8) analog exhibits fewer helix-related and long range nuclear Overhauser effects than does the d-Ser(B8) analog or native monomer. Evidence for enhanced conformational fluctuations in the unstable analog is provided by its attenuated CD spectrum. The inverse relationship between stereospecific stabilization and receptor binding strongly suggests that the B7-B10 beta-turn changes conformation on receptor binding.


Subject(s)
Insulin/chemistry , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Humans , Insulin/genetics , Insulin/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Receptor, Insulin/metabolism
13.
J Biol Chem ; 281(34): 24889-99, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16728398

ABSTRACT

The insulins of eutherian mammals contain histidines at positions B5 and B10. The role of His(B10) is well defined: although not required in the mature hormone for receptor binding, in the islet beta cell this side chain functions in targeting proinsulin to glucose-regulated secretory granules and provides axial zincbinding sites in storage hexamers. In contrast, the role of His(B5) is less well understood. Here, we demonstrate that its substitution with Ala markedly impairs insulin chain combination in vitro and blocks the folding and secretion of human proinsulin in a transfected mammalian cell line. The structure and stability of an Ala(B5)-insulin analog were investigated in an engineered monomer (DKP-insulin). Despite its impaired foldability, the structure of the Ala(B5) analog retains a native-like T-state conformation. At the site of substitution, interchain nuclear Overhauser effects are observed between the methyl resonance of Ala(B5) and side chains in the A chain; these nuclear Overhauser effects resemble those characteristic of His(B5) in native insulin. Substantial receptor binding activity is retained (80 +/- 10% relative to the parent monomer). Although the thermodynamic stability of the Ala(B5) analog is decreased (DeltaDeltaG(u) = 1.7 +/- 0.1 kcal/mol), consistent with loss of His(B5)-related interchain packing and hydrogen bonds, control studies suggest that this decrement cannot account for its impaired foldability. We propose that nascent long-range interactions by His(B5) facilitate alignment of Cys(A7) and Cys(B7) in protein-folding intermediates; its conservation thus reflects mechanisms of oxidative folding rather than structure-function relationships in the native state.


Subject(s)
Insulin/chemistry , Proinsulin/chemistry , Protein Folding , Histidine , Humans , Insulin/genetics , Models, Molecular , Proinsulin/genetics , Spectrum Analysis , Structure-Activity Relationship
14.
J Biol Chem ; 281(31): 22386-22396, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16751187

ABSTRACT

Insulin contains a beta-turn (residues B20-B23) interposed between two receptor-binding elements, the central alpha-helix of the B chain (B9-B19) and its C-terminal beta-strand (B24-B28). The turn contains conserved glycines at B20 and B23. Although insulin exhibits marked conformational variability among crystal forms, these glycines consistently maintain positive phi dihedral angles within a classic type-I beta-turn. Because the Ramachandran conformations of GlyB20 and GlyB23 are ordinarily forbidden to L-amino acids, turn architecture may contribute to structure or function. Here, we employ "chiral mutagenesis," comparison of corresponding D- and L-Ala substitutions, to investigate this turn. Control substitutions are introduced at GluB21, a neighboring residue exhibiting a conventional (negative) phi angle. The D- and L-Ala substitutions at B23 are associated with a marked stereospecific difference in activity. Whereas the D-AlaB23 analog retains native activity, the L analog exhibits a 20-fold decrease in receptor binding. By contrast, D- and L-AlaB20 analogs each exhibit high activity. Stereospecific differences between the thermodynamic stabilities of the analogs are nonetheless more pronounced at B20 (delta deltaG(u) 2.0 kcal/mole) than at B23 (delta deltaG(u) 0.7 kcal/mole). Control substitutions at B21 are well tolerated without significant stereospecificity. Chiral mutagenesis thus defines the complementary contributions of these conserved glycines to protein stability (GlyB20) or receptor recognition (GlyB23).


Subject(s)
Insulin/chemistry , Insulin/genetics , Mutagenesis , Alanine , Conserved Sequence , Glycine , Humans , Protein Structure, Secondary , Receptor, Insulin/metabolism , Sequence Alignment , Stereoisomerism , Thermodynamics
15.
Biochemistry ; 44(13): 4984-99, 2005 Apr 05.
Article in English | MEDLINE | ID: mdl-15794637

ABSTRACT

How insulin binds to its receptor is unknown despite decades of investigation. Here, we employ chiral mutagenesis-comparison of corresponding d and l amino acid substitutions in the hormone-to define a structural switch between folding-competent and active conformations. Our strategy is motivated by the T --> R transition, an allosteric feature of zinc-hexamer assembly in which an invariant glycine in the B chain changes conformations. In the classical T state, Gly(B8) lies within a beta-turn and exhibits a positive phi angle (like a d amino acid); in the alternative R state, Gly(B8) is part of an alpha-helix and exhibits a negative phi angle (like an l amino acid). Respective B chain libraries containing mixtures of d or l substitutions at B8 exhibit a stereospecific perturbation of insulin chain combination: l amino acids impede native disulfide pairing, whereas diverse d substitutions are well-tolerated. Strikingly, d substitutions at B8 enhance both synthetic yield and thermodynamic stability but markedly impair biological activity. The NMR structure of such an inactive analogue (as an engineered T-like monomer) is essentially identical to that of native insulin. By contrast, l analogues exhibit impaired folding and stability. Although synthetic yields are very low, such analogues can be highly active. Despite the profound differences between the foldabilities of d and l analogues, crystallization trials suggest that on protein assembly substitutions of either class can be accommodated within classical T or R states. Comparison between such diastereomeric analogues thus implies that the T state represents an inactive but folding-competent conformation. We propose that within folding intermediates the sign of the B8 phi angle exerts kinetic control in a rugged landscape to distinguish between trajectories associated with productive disulfide pairing (positive T-like values) or off-pathway events (negative R-like values). We further propose that the crystallographic T -->R transition in part recapitulates how the conformation of an insulin monomer changes on receptor binding. At the very least the ostensibly unrelated processes of disulfide pairing, allosteric assembly, and receptor binding appear to utilize the same residue as a structural switch; an "ambidextrous" glycine unhindered by the chiral restrictions of the Ramachandran plane. We speculate that this switch operates to protect insulin-and the beta-cell-from protein misfolding.


Subject(s)
Insulin/chemistry , Insulin/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Crystallography, X-Ray , Humans , In Vitro Techniques , Insulin/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protein Folding , Protein Subunits , Receptor, Insulin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Stereoisomerism , Thermodynamics
16.
Biochemistry ; 44(13): 5000-16, 2005 Apr 05.
Article in English | MEDLINE | ID: mdl-15794638

ABSTRACT

Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Insulin/analogs & derivatives , Insulin/chemistry , Insulin/genetics , Mutation , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Cross-Linking Reagents , Crystallography, X-Ray , Humans , In Vitro Techniques , Insulin/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Receptor, Insulin/metabolism , Sequence Homology, Amino Acid
17.
Biochemistry ; 43(51): 16119-33, 2004 Dec 28.
Article in English | MEDLINE | ID: mdl-15610006

ABSTRACT

The receptor-binding surface of insulin is broadly conserved, reflecting its evolutionary optimization. Neighboring positions nevertheless offer an opportunity to enhance activity, through either transmitted structural changes or introduction of novel contacts. Nonconserved residue A8 is of particular interest as Thr(A8) --> His substitution (a species variant in birds and fish) augments the potency of human insulin. Diverse A8 substitutions are well tolerated, suggesting that the hormone-receptor interface is not tightly packed at this site. To resolve whether enhanced activity is directly or indirectly mediated by the variant A8 side chain, we have determined the crystal structure of His(A8)-insulin and investigated the photo-cross-linking properties of an A8 analogue containing p-azidophenylalanine. The structure, characterized as a T(3)R(3)(f) zinc hexamer at 1.8 A resolution, is essentially identical to that of native insulin. The photoactivatable analogue exhibits efficient cross-linking to the insulin receptor. The site of cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This contact, to our knowledge the first to be demonstrated from the A chain, is inconsistent with a recent model of the hormone-receptor complex derived from electron microscopy. Optimizing the binding interaction of a nonconserved side chain on the surface of insulin may thus enhance its activity.


Subject(s)
Insulin/metabolism , Receptor, Insulin/metabolism , Threonine/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Insulin/genetics , Molecular Sequence Data , Protein Structure, Tertiary
18.
Biochemistry ; 43(26): 8356-72, 2004 Jul 06.
Article in English | MEDLINE | ID: mdl-15222748

ABSTRACT

How insulin binds to and activates the insulin receptor has long been the subject of speculation. Of particular interest are invariant phenylalanine residues at consecutive positions in the B chain (residues B24 and B25). Sites of mutation causing diabetes mellitus, these residues occupy opposite structural environments: Phe(B25) projects from the surface of insulin, whereas Phe(B24) packs against the core. Despite these differences, site-specific cross-linking suggests that each contacts the insulin receptor. Photoactivatable derivatives of insulin containing respective p-azidophenylalanine substitutions at positions B24 and B25 were synthesized in an engineered monomer (DKP-insulin). On ultraviolet irradiation each derivative cross-links efficiently to the receptor. Packing of Phe(B24) at the receptor interface (rather than against the core of the hormone) may require a conformational change in the B chain. Sites of cross-linking in the receptor were mapped to domains by Western blot. Remarkably, whereas B25 cross-links to the C-terminal domain of the alpha subunit in accord with previous studies (Kurose, T., et al. (1994) J. Biol. Chem. 269, 29190-29197), the probe at B24 cross-links to its N-terminal domain (the L1 beta-helix). Our results demonstrate that consecutive residues in insulin contact widely separated sequences in the receptor and in turn suggest a revised interpretation of electron-microscopic images of the complex. By tethering the N- and C-terminal domains of the extracellular alpha subunit, insulin is proposed to stabilize an active conformation of the disulfide-linked transmembrane tyrosine kinase.


Subject(s)
Diabetes Mellitus/genetics , Insulin/genetics , Receptor, Insulin/chemistry , Amino Acid Sequence , Animals , Azides/chemistry , Blotting, Western , CHO Cells , Chymotrypsin/chemistry , Cricetinae , Cross-Linking Reagents/pharmacology , Dimerization , Disulfides , Exons , Humans , Insulin/metabolism , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutation , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Trypsin/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL