Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194966

ABSTRACT

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Caspases/metabolism , COVID-19/immunology , COVID-19/virology , Lung/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Internalization , Spike Glycoprotein, Coronavirus/genetics
2.
J Virol ; 98(7): e0062824, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38899895

ABSTRACT

The potency of antibody neutralization in cell culture has been used as the key criterion for selection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for clinical development. As other aspects may also influence the degree of protection in vivo, we compared the efficacy of two neutralizing monoclonal antibodies (TRES6 and 4C12) targeting different epitopes of the receptor binding domain (RBD) of SARS-CoV-2 in a prophylactic setting in rhesus monkeys. All four animals treated with TRES6 had reduced viral loads in the upper respiratory tract 2 days after naso-oropharyngeal challenge with the Alpha SARS-CoV-2 variant. Starting 2 days after challenge, mutations conferring resistance to TRES6 were dominant in two of the rhesus monkeys, with both animals failing to maintain reduced viral loads. Consistent with its lower serum neutralization titer at the day of challenge, prophylaxis with 4C12 tended to suppress viral load at day 2 less efficiently than TRES6. However, a week after challenge, mean viral loads in the lower respiratory tract in 4C12-treated animals were lower than in the TRES6 group and no mutations conferring resistance to 4C12 could be detected in viral isolates from nasal or throat swabs. Thus, genetic barrier to resistance seems to be a critical parameter for the efficacy of prophylaxis with monoclonal antibodies against SARS-CoV-2. Furthermore, comparison of antibody concentrations in respiratory secretions to those in serum shows reduced distribution of the 4C12 antibody into respiratory secretions and a delay in the appearance of antibodies in bronchoalveolar lavage fluid compared to their appearance in secretions of the upper respiratory tract.IMPORTANCEMonoclonal antibodies are a powerful tool for the prophylaxis and treatment of acute viral infections. Hence, they were one of the first therapeutic agents licensed for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oftentimes, the main criterion for the selection of antibodies for clinical development is their potency of neutralization in cell culture. By comparing two antibodies targeting the Spike protein of SARS-CoV-2, we now observed that the antibody that neutralized SARS-CoV-2 more efficiently in cell culture suppressed viral load in challenged rhesus monkeys to a lesser extent. Extraordinary rapid emergence of mutants of the challenge virus, which had lost their sensitivity to the antibody, was identified as the major reason for the reduced efficacy of the antibody in rhesus monkeys. Therefore, the viral genetic barrier to resistance to antibodies also affects their efficacy.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Disease Models, Animal , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Load , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/prevention & control , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Humans , Mutation , Epitopes/immunology , Neutralization Tests
3.
J Proteome Res ; 23(5): 1615-1633, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38649144

ABSTRACT

Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.


Subject(s)
Autophagy , B-Lymphocytes , Glycerophospholipids , Lysosomes , Animals , Mice , B-Lymphocytes/metabolism , Glycerophospholipids/metabolism , Lipid Metabolism , Lipidomics/methods , Lysosomes/metabolism , Mitochondria/metabolism , Proteomics/methods
4.
Cell Rep ; 43(2): 113739, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38340319

ABSTRACT

Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.


Subject(s)
B-Lymphocytes , Immunity, Humoral , Animals , Mice , Glucose , Glucose Transporter Type 1 , Plasma Cells
5.
Mol Metab ; 87: 101981, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971403

ABSTRACT

OBJECTIVE: The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS: The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS: OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS: Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.


Subject(s)
B-Lymphocytes , Flavin-Adenine Dinucleotide , Flow Cytometry , NAD , Single-Cell Analysis , Humans , Flow Cytometry/methods , NAD/metabolism , Flavin-Adenine Dinucleotide/metabolism , Single-Cell Analysis/methods , B-Lymphocytes/metabolism , Mitochondria/metabolism , T-Lymphocytes/metabolism , Oxidation-Reduction , Fluorescence , Arthritis, Rheumatoid/metabolism , Glycolysis , Oxidative Phosphorylation , Female , Male , Glucose/metabolism
6.
Vaccines (Basel) ; 12(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38793739

ABSTRACT

Transmissibility and immune evasion of the recently emerged, highly mutated SARS-CoV-2 BA.2.87.1 are unknown. Here, we report that BA.2.87.1 efficiently enters human cells but is more sensitive to antibody-mediated neutralization than the currently dominating JN.1 variant. Acquisition of adaptive mutations might thus be needed for efficient spread in the population.

SELECTION OF CITATIONS
SEARCH DETAIL