Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
FASEB J ; 37(4): e22882, 2023 04.
Article in English | MEDLINE | ID: mdl-36943402

ABSTRACT

Physical inactivity is one of the leading causes of chronic metabolic disease including obesity. Increasing physical activity (PA) has been shown to improve cardiometabolic and musculoskeletal health and to be associated with a distinct gut microbiota composition in trained athletes. However, the impact of PA on the gut microbiota is inconclusive for individuals performing PA in their day-to-day life. This study examined the role of PA and hand-grip strength on gut microbiome composition in middle-aged adults (40-65 years, n = 350) with normal (18.5-24.9 kg/m2 ) and overweight (25-29.9 kg/m2 ) body mass index (BMI). PA was recorded using the International Physical Activity Questionnaire, and hand-grip strength was measured using a dynamometer. Serum samples were assessed for lipidomics while DNA was extracted from fecal samples for microbiome analysis. Overweight participants showed a higher concentration of triacylglycerols, and lower concentrations of cholesteryl esters, sphingomyelin, and lyso-phosphotidylcholine lipids (p < .05) compared with those with normal BMI. Additionally, overweight participants had a lower abundance of the Oscillibacter genus (p < .05). The impact of PA duration on the gut microbiome was BMI dependent. In normal but not overweight participants, high PA duration showed greater relative abundance of commensal taxa such as Actinobacteria and Proteobacteria phyla, as well as Collinsella and Prevotella genera (p < .05). Furthermore, in males with normal BMI, a stronger grip strength was associated with a higher relative abundance of Faecalibacterium and F. prausnitzii (p < .05) compared with lower grip strength. Taken together, data suggest that BMI plays a significant role in modeling PA-induced changes in gut microbiota.


Subject(s)
Body Mass Index , Exercise , Gastrointestinal Microbiome , Adult , Aged , Female , Humans , Male , Middle Aged , Exercise/physiology , Obesity/microbiology , Overweight/microbiology , Hand Strength
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675224

ABSTRACT

Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.


Subject(s)
Lipidomics , Metabolic Diseases , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Lipids/chemistry , Precision Medicine , Quality of Life , Lipid Metabolism , Metabolic Diseases/diagnosis , Metabolic Diseases/genetics , Metabolic Diseases/therapy
3.
J Lipid Res ; 63(6): 100208, 2022 06.
Article in English | MEDLINE | ID: mdl-35436499

ABSTRACT

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Subject(s)
COVID-19 , Mouthwashes , Antiviral Agents , Cetylpyridinium , Humans , Lipids , Mouthwashes/pharmacology , Povidone-Iodine , RNA, Viral , SARS-CoV-2
4.
Mass Spectrom Rev ; 40(3): 162-176, 2021 05.
Article in English | MEDLINE | ID: mdl-32233039

ABSTRACT

The boost of research output in lipidomics during the last decade is tightly linked to improved instrumentation in mass spectrometry. Associated with this trend is the shift from low resolution-toward high-resolution lipidomics platforms. This review article summarizes the state of the art in the lipidomics field with a particular focus on the merits of high mass resolution. Following some theoretical considerations on the benefits of high mass resolution in lipidomics, it starts with a historical perspective on lipid analysis by sector instruments and moves further to today's instrumental approaches, including shotgun lipidomics, liquid chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time-of-flight, and imaging lipidomics. Subsequently, several data processing and data analysis software packages are critically evaluated with all their pros and cons. Finally, this article emphasizes the importance and necessity of quality standards as the field evolves from its pioneering phase into a mature and robust omics technology and lists various initiatives for improving the applicability of lipidomics. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.


Subject(s)
Lipidomics/methods , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Chromatography, Liquid/methods , Humans , Lipids/analysis , Lipids/chemistry , Software , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
5.
J Inherit Metab Dis ; 45(2): 235-247, 2022 03.
Article in English | MEDLINE | ID: mdl-34671989

ABSTRACT

BACKGROUND: The metabolic defect in glycogen storage disease type I (GSDI) results in fasting hypoglycemia and typical secondary metabolic abnormalities (eg, hypertriglyceridemia, hyperlactatemia, hyperuricemia). The aim of this study was to assess further perturbations of the metabolic network in GSDI patients under ongoing treatment. METHODS: In this prospective observational study, plasma samples of 14 adult patients (11 GSDIa, 3 GSDIb. Mean age 26.4 years, range 16-46 years) on standard treatment were compared to a cohort of 31 healthy controls utilizing ultra-high performance liquid chromatography (UHPLC) in combination with high resolution tandem mass spectrometry (HR-MS/MS) and subsequent statistical multivariate analysis. In addition, plasma fatty acid profiling was performed by GC/EI-MS. RESULTS: The metabolomic profile showed alterations of metabolites in different areas of the metabolic network in both GSD subtypes, including pathways of fuel metabolism and energy generation, lipids and fatty acids, amino acid and methyl-group metabolism, the urea cycle, and purine/pyrimidine metabolism. These alterations were present despite adequate dietary treatment, did not correlate with plasma triglycerides or lactate, both parameters typically used to assess the quality of metabolic control in clinical practice, and were not related to the presence or absence of complications (ie, nephropathy or liver adenomas). CONCLUSION: The metabolic defect of GSDI has profound effects on a variety of metabolic pathways in addition to the known typical abnormalities. These alterations are present despite optimized dietary treatment, which may contribute to the risk of developing long-term complications, an inherent problem of GSDI which appears to be only partly modified by current therapy.


Subject(s)
Glycogen Storage Disease Type I , Hypoglycemia , Adolescent , Adult , Chromatography, High Pressure Liquid , Glycogen Storage Disease Type I/complications , Humans , Hypoglycemia/complications , Metabolomics , Middle Aged , Tandem Mass Spectrometry , Young Adult
6.
J Lipid Res ; 62: 100138, 2021.
Article in English | MEDLINE | ID: mdl-34662536

ABSTRACT

In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.


Subject(s)
Lipidomics , Lipids/analysis , Humans , Lipidomics/standards , Mass Spectrometry
7.
J Lipid Res ; 62: 100104, 2021.
Article in English | MEDLINE | ID: mdl-34384788

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.


Subject(s)
Lipidomics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Lipid Metabolism , Male , Middle Aged , Young Adult
8.
J Hepatol ; 75(1): 46-54, 2021 07.
Article in English | MEDLINE | ID: mdl-33684506

ABSTRACT

BACKGROUND & AIMS: Excessive fructose intake is associated with increased de novo lipogenesis, blood triglycerides, and hepatic insulin resistance. We aimed to determine whether fructose elicits specific effects on lipid metabolism independently of excessive caloric intake. METHODS: A total of 94 healthy men were studied in this double-blind, randomized trial. They were assigned to daily consumption of sugar-sweetened beverages (SSBs) containing moderate amounts of fructose, sucrose (fructose-glucose disaccharide) or glucose (80 g/day) in addition to their usual diet or SSB abstinence (control group) for 7 weeks. De novo fatty acid (FA) and triglyceride synthesis, lipolysis and plasma free FA (FFA) oxidation were assessed by tracer methodology. RESULTS: Daily intake of beverages sweetened with free fructose and fructose combined with glucose (sucrose) led to a 2-fold increase in basal hepatic fractional secretion rates (FSR) compared to control (median FSR %/day: sucrose 20.8 (p = 0.0015); fructose 19.7 (p = 0.013); control 9.1). Conversely, the same amounts of glucose did not change FSR (median of FSR %/day 11.0 (n.s.)). Fructose intake did not change basal secretion of newly synthesized VLDL-triglyceride, nor did it alter rates of peripheral lipolysis, nor total FA and plasma FFA oxidation. Total energy intake was similar across groups. CONCLUSIONS: Regular consumption of both fructose- and sucrose-sweetened beverages in moderate doses - associated with stable caloric intake - increases hepatic FA synthesis even in a basal state; this effect is not observed after glucose consumption. These findings provide evidence of an adaptative response to regular fructose exposure in the liver. LAY SUMMARY: This study investigated the metabolic effects of daily sugar-sweetened beverage consumption for several weeks in healthy lean men. It revealed that beverages sweetened with the sugars fructose and sucrose (glucose and fructose combined), but not glucose, increase the ability of the liver to produce lipids. This change may pave the way for further unfavorable effects on metabolic health. CLINICAL TRIAL REGISTRATION NUMBER: NCT01733563.


Subject(s)
Fatty Acids/biosynthesis , Fructose , Glucose , Lipogenesis , Lipoproteins, VLDL/biosynthesis , Liver , Sucrose , Triglycerides/biosynthesis , Adult , Double-Blind Method , Energy Intake , Fructose/administration & dosage , Fructose/adverse effects , Fructose/metabolism , Glucose/administration & dosage , Glucose/metabolism , Healthy Volunteers , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Lipogenesis/drug effects , Lipogenesis/physiology , Liver/drug effects , Liver/metabolism , Male , Sucrose/administration & dosage , Sucrose/adverse effects , Sucrose/metabolism , Sugar-Sweetened Beverages , Sweetening Agents/pharmacology
9.
Proc Natl Acad Sci U S A ; 115(24): 6225-6230, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844165

ABSTRACT

Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M (PCK2), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M-dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation.


Subject(s)
Glycerol/metabolism , Neoplasms/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Phospholipids/metabolism , A549 Cells , Animals , Glucose/metabolism , Glutamine/metabolism , Heterografts , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Nude , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phospholipids/chemistry
10.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445223

ABSTRACT

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Subject(s)
Benzoxazoles/pharmacology , Brain/metabolism , Endotoxemia , Isoquinolines/pharmacology , Lipopolysaccharides/toxicity , Microglia/metabolism , Phosphoric Diester Hydrolases/metabolism , Piperazines/pharmacology , Piperidines/pharmacology , Receptors, Lysophosphatidic Acid , Animals , Brain/pathology , Cell Line , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/metabolism , Endotoxemia/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Mice , Microglia/pathology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism
11.
Int J Mol Sci ; 22(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576136

ABSTRACT

Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.


Subject(s)
Non-alcoholic Fatty Liver Disease/pathology , PPAR gamma/deficiency , Sex Characteristics , Animals , Disease Models, Animal , Fatty Acids/metabolism , Female , Gene Expression Regulation , Gonadal Steroid Hormones/metabolism , Inflammation/pathology , Lipid Droplets/metabolism , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , PPAR gamma/metabolism , Phenotype , Signal Transduction , Triglycerides/metabolism
12.
J Lipid Res ; 61(12): 1539-1555, 2020 12.
Article in English | MEDLINE | ID: mdl-33037133

ABSTRACT

A comprehensive and standardized system to report lipid structures analyzed by MS is essential for the communication and storage of lipidomics data. Herein, an update on both the LIPID MAPS classification system and shorthand notation of lipid structures is presented for lipid categories Fatty Acyls (FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), and Sterols (ST). With its major changes, i.e., annotation of ring double bond equivalents and number of oxygens, the updated shorthand notation facilitates reporting of newly delineated oxygenated lipid species as well. For standardized reporting in lipidomics, the hierarchical architecture of shorthand notation reflects the diverse structural resolution powers provided by mass spectrometric assays. Moreover, shorthand notation is expanded beyond mammalian phyla to lipids from plant and yeast phyla. Finally, annotation of atoms is included for the use of stable isotope-labeled compounds in metabolic labeling experiments or as internal standards. This update on lipid classification, nomenclature, and shorthand annotation for lipid mass spectra is considered a standard for lipid data presentation.


Subject(s)
Lipids/chemistry , Mass Spectrometry , Terminology as Topic
13.
Anal Chem ; 92(20): 14054-14062, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33003696

ABSTRACT

Sphingolipids constitute a heterogeneous lipid category that is involved in many key cellular functions. For high-throughput analyses of sphingolipids, tandem mass spectrometry (MS/MS) is the method of choice, offering sufficient sensitivity, structural information, and quantitative precision for detecting hundreds to thousands of species simultaneously. While glycerolipids and phospholipids are predominantly non-hydroxylated, sphingolipids are typically dihydroxylated. However, species containing one or three hydroxylation sites can be detected frequently. This variability in the number of hydroxylation sites on the sphingolipid long-chain base and the fatty acyl moiety produces many more isobaric species and fragments than for other lipid categories. Due to this complexity, the automated annotation of sphingolipid species is challenging, and incorrect annotations are common. In this study, we present an extension of the Lipid Data Analyzer (LDA) "decision rule set" concept that considers the structural characteristics that are specific for this lipid category. To address the challenges inherent to automated annotation of sphingolipid structures from MS/MS data, we first developed decision rule sets using spectra from authentic standards and then tested the applicability on biological samples including murine brain and human plasma. A benchmark test based on the murine brain samples revealed a highly improved annotation quality as measured by sensitivity and reliability. The results of this benchmark test combined with the easy extensibility of the software to other (sphingo)lipid classes and the capability to detect and correctly annotate novel sphingolipid species make LDA broadly applicable to automated sphingolipid analysis, especially in high-throughput settings.


Subject(s)
Brain/metabolism , Medical Records Systems, Computerized/instrumentation , Plasma/metabolism , Sphingolipids/analysis , Sphingolipids/metabolism , Animals , Binding Sites , Chromatography, High Pressure Liquid , Fatty Acids/chemistry , High-Throughput Screening Assays , Humans , Hydroxylation , Mice , Models, Chemical , Reproducibility of Results , Tandem Mass Spectrometry
14.
Nat Methods ; 14(12): 1171-1174, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29058722

ABSTRACT

We achieve automated and reliable annotation of lipid species and their molecular structures in high-throughput data from chromatography-coupled tandem mass spectrometry using decision rule sets embedded in Lipid Data Analyzer (LDA; http://genome.tugraz.at/lda2). Using various low- and high-resolution mass spectrometry instruments with several collision energies, we proved the method's platform independence. We propose that the software's reliability, flexibility, and ability to identify novel lipid molecular species may now render current state-of-the-art lipid libraries obsolete.


Subject(s)
Chromatography, Liquid/methods , Lipids/analysis , Lipids/chemistry , Tandem Mass Spectrometry/methods , Algorithms , Animals , Liver/chemistry , Mice , Molecular Structure , Reproducibility of Results , Sensitivity and Specificity
15.
Anal Bioanal Chem ; 412(10): 2191-2209, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31820027

ABSTRACT

Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows, including sample preparation, either liquid-liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spectrometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting; some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.


Subject(s)
Lipidomics/methods , Lipids/chemistry , Mass Spectrometry/methods , Animals , Humans , Lipid Metabolism , Lipids/isolation & purification , Solid Phase Extraction
16.
Am J Physiol Endocrinol Metab ; 316(3): E347-E357, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30422706

ABSTRACT

Human milk oligosaccharides (HMOs) are bioactive glycans linked with health benefits to both the breast-fed infant and lactating mother. We hypothesized that HMOs are present before lactation, already during pregnancy, and are influenced by maternal body composition. In a pilot study, we investigated individual and temporal variations in HMO composition and concentration in maternal serum at gestational weeks 10-14 ( visit 1), 20-24 ( visit 2), and 30-35 (visit 3) (V1, V2, and V3, respectively) and associations with maternal body composition. HMOs were quantified by HPLC and confirmed by enzymatic digest and mass spectrometry. Associations of maternal prepregnancy body mass index (BMI), subcutaneous adipose tissue (SAT) thickness, and adipokines with absolute and relative HMO concentrations were analyzed by Spearman correlation. We identified 16 HMOs and 2 oligosaccharides not common to human milk. HMO concentration and composition varied with gestational age and secretor status. HMO concentration increased with gestational age and changed from a predominantly sialylated profile at V1 to a more balanced fucosylated-to-sialylated ratio at V3, mostly due to a profound increase in 2'-fucosyllactose (2'-FL), reflecting secretor phenotype. In secretor-positive women, BMI was negatively correlated with 2'-FL at V2. SAT at V1 and V2 were strongly negatively correlated with 2'-FL concentrations. This pilot study shows that prenatal HMOs are present in maternal serum, suggesting roles for HMOs already during pregnancy. Our result that maternal body composition is associated with prenatal HMOs might indicate that maternal metabolism modulates HMO composition with unknown implications for maternal and fetal health already during pregnancy.


Subject(s)
Adipokines/blood , Milk, Human , Oligosaccharides/blood , Pregnancy/blood , Adiponectin/blood , Adult , Body Composition , Body Mass Index , Chromatography, High Pressure Liquid , Chromatography, Liquid , Cohort Studies , Female , Gestational Age , Humans , Leptin/blood , Longitudinal Studies , Organ Size , Pilot Projects , Pregnancy Trimester, First , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Prospective Studies , Subcutaneous Fat/anatomy & histology , Tandem Mass Spectrometry
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 584-594, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29524543

ABSTRACT

Mammalian phosphoglycolate phosphatase (PGP, also known as AUM or glycerol-3-phosphate phosphatase) is a small molecule-directed phosphatase important for metabolite repair and lipid metabolism. Although PGP was first characterized as an enzyme involved in epidermal growth factor (EGF) signaling, PGP protein substrates have remained elusive. Here we show that PGP depletion facilitates fatty acid flux through the intracellular triacylglycerol/fatty acid cycle, and that phosphatidylinositol-4,5-bisphosphate (PIP2), produced in a side branch of this cycle, is critical for the impact of PGP activity on EGF-induced signaling. Loss of endogenous PGP expression amplified both EGF-induced EGF receptor autophosphorylation and Src-dependent tyrosine phosphorylation of phospholipase C-γ1 (PLCγ1). Furthermore, EGF enhanced the formation of circular dorsal ruffles in PGP-depleted cells via Src/PLCγ1/protein kinase C (PKC)-dependent signaling to the cytoskeleton. Inhibition of adipose triglyceride lipase normalized the increased PIP2 content, reduced EGF-dependent PLCγ1 hyperphosphorylation, and decreased the elevated dorsal ruffle formation of PGP-depleted cells. Our data explain how PGP exerts control over EGF-induced cellular protein tyrosine phosphorylation, and reveal an unexpected influence of triacylglycerol turnover on growth factor signaling.


Subject(s)
Epidermal Growth Factor/metabolism , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Triglycerides/metabolism , Cell Line , Epidermal Growth Factor/genetics , Humans , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphoric Monoester Hydrolases/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Triglycerides/genetics
18.
J Lipid Res ; 58(12): 2275-2288, 2017 12.
Article in English | MEDLINE | ID: mdl-28986437

ABSTRACT

As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.


Subject(s)
Benchmarking , Laboratory Proficiency Testing/statistics & numerical data , Lipids/blood , Humans , International Cooperation , Lipid Metabolism/physiology , Lipids/standards , Observer Variation , Reference Standards , Reproducibility of Results
19.
Anal Chem ; 89(22): 12252-12260, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29087685

ABSTRACT

Multiple-tracer approaches for investigating glucose metabolism in humans usually involve the administration of stable and radioactive glucose tracers and the subsequent determination of tracer enrichments in sampled blood. When using conventional, low-resolution mass spectrometry (LRMS), the number of spectral interferences rises rapidly with the number of stable tracers employed. Thus, in LRMS, both computational effort and statistical uncertainties associated with the correction for spectral interferences limit the number of stable tracers that can be simultaneously employed (usually two). Here we show that these limitations can be overcome by applying high-resolution mass spectrometry (HRMS). The HRMS method presented is based on the use of an Orbitrap mass spectrometer operated at a mass resolution of 100 000 to allow electrospray-generated ions of the deprotonated glucose molecules to be monitored at their exact masses. The tracer enrichment determination in blood plasma is demonstrated for several triple combinations of 13C- and 2H-labeled glucose tracers (e.g., [1-2H1]-, [6,6-2H2]-, [1,6-13C2]glucose). For each combination it is shown that ions arising from 2H-labeled tracers are completely differentiated from those arising from 13C-labeled tracers, thereby allowing the enrichment of a tracer to be simply calculated from the observed ion intensities using a standard curve with curve parameters unaffected by the presence of other tracers. For each tracer, the HRMS method exhibits low limits of detection and good repeatability in the tested 0.1-15.0% enrichment range. Additionally, due to short sample preparation and analysis times, the method is well-suited for high-throughput determination of multiple glucose tracer enrichments in plasma samples.


Subject(s)
Deuterium/chemistry , Glucose/analysis , Carbon Isotopes , Glucose/metabolism , Humans , Mass Spectrometry
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(8): 740-746, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28341148

ABSTRACT

Over the last two decades, lipidomics has evolved into an 'omics' technology pari passu with benchmarking 'omics' technologies, such as genomics or proteomics. The driving force behind this development was a constant advance in mass spectrometry and related technologies. The aim of this opinion article is to give the interested reader a concise but still comprehensive overview about the technological state of the art in lipidomics, current challenges and perspectives for future development. As such, this article guides through the whole workflow of lipidomics, from sampling to data analysis. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.


Subject(s)
Lipid Metabolism/physiology , Lipids/chemistry , Genomics/methods , Humans , Mass Spectrometry/methods , Metabolomics/methods , Proteomics/methods , Specimen Handling , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL