Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nat Chem Biol ; 19(9): 1054-1062, 2023 09.
Article in English | MEDLINE | ID: mdl-37169961

ABSTRACT

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.


Subject(s)
Membrane Proteins , Protein Sorting Signals , Animals , Mice , Protein Transport , Membrane Proteins/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Protein Biosynthesis
2.
Biochemistry ; 60(22): 1741-1754, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34029049

ABSTRACT

In this paper, human platelet 12-lipoxygenase [h12-LOX (ALOX12)], human reticulocyte 15-lipoxygenase-1 [h15-LOX-1 (ALOX15)], and human epithelial 15-lipoxygenase-2 [h15-LOX-2 (ALOX15B)] were observed to react with docosahexaenoic acid (DHA) and produce 17S-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17S-HpDHA). The kcat/KM values with DHA for h12-LOX, h15-LOX-1, and h15-LOX-2 were 12, 0.35, and 0.43 s-1 µM-1, respectively, which demonstrate h12-LOX as the most efficient of the three. These values are comparable to their counterpart kcat/KM values with arachidonic acid (AA), 14, 0.98, and 0.24 s-1 µM-1, respectively. Comparison of their product profiles with DHA demonstrates that the three LOX isozymes produce 11S-HpDHA, 14S-HpDHA, and 17S-HpDHA, to varying degrees, with 17S-HpDHA being the majority product only for the 15-LOX isozymes. The effective kcat/KM values (kcat/KM × percent product formation) for 17S-HpDHA of the three isozymes indicate that the in vitro value of h12-LOX was 2.8-fold greater than that of h15-LOX-1 and 1.3-fold greater than that of h15-LOX-2. 17S-HpDHA was an effective substrate for h12-LOX and h15-LOX-1, with four products being observed under reducing conditions: protectin DX (PDX), 16S,17S-epoxy-4Z,7Z,10Z,12E,14E,19Z-docosahexaenoic acid (16S,17S-epoxyDHA), the key intermediate in neuroprotection D1 biosynthesis [NPD1, also known as protectin D1 (PD1)], 11,17S-diHDHA, and 16,17S-diHDHA. However, h15-LOX-2 did not react with 17-HpDHA. With respect to their effective kcat/KM values, h12-LOX was markedly less effective than h15-LOX-1 in reacting with 17S-HpDHA, with a 55-fold lower effective kcat/KM in producing 16S,17S-epoxyDHA and a 27-fold lower effective kcat/KM in generating PDX. This is the first direct demonstration of h15-LOX-1 catalyzing this reaction and reveals an in vitro pathway for PDX and NPD1 intermediate biosynthesis. In addition, epoxide formation from 17S-HpDHA and h15-LOX-1 was negatively affected via allosteric regulation by 17S-HpDHA (Kd = 5.9 µM), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) (Kd = 2.5 µM), and 17S-hydroxy-13Z,15E,19Z-docosatrienoic acid (17S-HDTA) (Kd = 1.4 µM), suggesting a possible regulatory pathway in reducing epoxide formation. Finally, 17S-HpDHA and PDX inhibited platelet aggregation, with EC50 values of approximately 1 and 3 µM, respectively. The in vitro results presented here may help advise in vivo PDX and NPD1 intermediate (i.e., 16S,17S-epoxyDHA) biosynthetic investigations and support the benefits of DHA rich diets.


Subject(s)
Docosahexaenoic Acids/metabolism , Lipoxygenases/metabolism , Allosteric Regulation , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Biosynthetic Pathways , Blood Platelets/metabolism , Docosahexaenoic Acids/pharmacokinetics , Docosahexaenoic Acids/pharmacology , Humans , Lipoxygenase/metabolism , Lipoxygenases/biosynthesis
3.
Biochemistry ; 60(10): 802-812, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33635645

ABSTRACT

It was previously shown that human platelet 12S-lipoxygenase (h12-LOX) exists as a dimer; however, the specific structure is unknown. In this study, we create a model of the dimer through a combination of computational methods, experimental mutagenesis, and hydrogen-deuterium exchange (HDX) investigations. Initially, Leu183 and Leu187 were replaced by negatively charged glutamate residues and neighboring aromatic residues were replaced with alanine residues (F174A/W176A/L183E/L187E/Y191A). This quintuple mutant disrupted both the hydrophobic and π-π interactions, generating an h12-LOX monomer. To refine the determinants for dimer formation further, the L183E/L187E mutant was generated and the equilibrium shifted mostly toward the monomer. We then submitted the predicted monomeric structure to protein-protein docking to create a model of the dimeric complex. A total of nine of the top 10 most energetically favorable docking conformations predict a TOP-to-TOP dimeric arrangement of h12-LOX, with the α-helices containing a Leu-rich region (L172, L183, L187, and L194), corroborating our experimental results showing the importance of these hydrophobic interactions for dimerization. This model was supported by HDX investigations that demonstrated the stabilization of four, non-overlapping peptides within helix α2 of the TOP subdomain for wt-h12-LOX, consistent with the dimer interface. Most importantly, our data reveal that the dimer and monomer of h12-LOX have distinct biochemical properties, suggesting that the structural changes due to dimerization have allosteric effects on active site catalysis and inhibitor binding.


Subject(s)
Arachidonate 12-Lipoxygenase/chemistry , Arachidonate 12-Lipoxygenase/metabolism , Deuterium Exchange Measurement/methods , Molecular Docking Simulation/methods , Mutagenesis , Mutation , Protein Multimerization , Arachidonate 12-Lipoxygenase/genetics , Catalytic Domain , Humans , Models, Molecular , Protein Conformation
4.
Mol Pharm ; 18(1): 451-460, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33315406

ABSTRACT

Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and ß-1,4-galactosyltransferase-7 (ß-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-ß-xylosides inhibited ß-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or ß-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and ß-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 µM (drug), and U87 cells at IC50 = 10.57 µM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus ß-nitro xyloside conformer to XYLT-1 and ß-GALT-7 enzymes.


Subject(s)
Glioblastoma/metabolism , Glycosides/metabolism , Animals , Cell Line, Tumor , Chondroitin Sulfates/metabolism , Galactosyltransferases/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Molecular Docking Simulation/methods , Pentosyltransferases/metabolism , Prodrugs/metabolism , UDP Xylose-Protein Xylosyltransferase
5.
Bioorg Med Chem ; 46: 116347, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34507163

ABSTRACT

Human platelet 12-(S)-Lipoxygenase (12-LOX) is a fatty acid metabolizing oxygenase that plays an important role in platelet activation and cardiometabolic disease. ML355 is a specific 12-LOX inhibitor that has been shown to decrease thrombosis without prolonging hemostasis and protect human pancreatic islets from inflammatory injury. It has an amenable drug-like scaffold with nM potency and encouraging ADME and PK profiles, but its binding mode to the active site of 12-LOX remains unclear. In the current work, we combined computational modeling and experimental mutagenesis to propose a model in which ML355 conforms to the "U" shape of the 12-LOX active site, with the phenyl linker region wrapping around L407. The benzothiazole of ML355 extends into the bottom of the active site cavity, pointing towards residues A417 and V418. However, reducing the active site depth alone did not affect ML355 potency. In order to lower the potency of ML355, the cavity needed to be reduced in both length and width. In addition, H596 appears to position ML355 in the active site through an interaction with the 2-methoxy phenol moiety of ML355. Combined, this binding model suggested that the benzothiazole of ML355 could be enlarged. Therefore, a naphthyl-benzothiazole derivative of ML355, Lox12Slug001, was synthesized and shown to have 7.2-fold greater potency than ML355. This greater potency is proposed to be due to additional van der Waals interactions and pi-pi stacking with F414 and F352. Lox12Slug001 was also shown to be highly selective against 12-LOX relative to the other LOX isozymes and more importantly, it showed activity in rescuing human islets exposed to inflammatory cytokines with comparable potency to ML355. Further studies are currently being pursued to derivatize ML355 in order to optimize the additional space in the active site, while maintaining acceptable drug-like properties.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Drug Development , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Sulfonamides/pharmacology , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
6.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34500187

ABSTRACT

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Kinetics , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship
7.
Biochemistry ; 59(19): 1832-1844, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32324389

ABSTRACT

Human reticulocyte 15-lipoxygenase-1 (h15-LOX-1 or ALOX15) and platelet 12-lipoxygenase (h12-LOX or ALOX12) catalysis of docosahexaenoic acid (DHA) and the maresin precursor, 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA), were investigated to determine their product profiles and relative rates in the biosynthesis of the key maresin intermediate, 13S,14S-epoxy-4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid (13S,14S-epoxy-DHA). Both enzymes converted DHA to 14S-HpDHA, with h12-LOX having a 39-fold greater kcat/KM value (14.0 ± 0.8 s-1 µM-1) than that of h15-LOX-1 (0.36 ± 0.08 s-1 µM-1) and a 1.8-fold greater 14S-HpDHA product selectivity, 81 and 46%, respectively. However, h12-LOX was markedly less effective at producing 13S,14S-epoxy-DHA from 14S-HpDHA than h15-LOX-1, with a 4.6-fold smaller kcat/KM value, 0.0024 ± 0.0002 and 0.11 ± 0.006 s-1 µM-1, respectively. This is the first evidence of h15-LOX-1 to catalyze this reaction and reveals a novel in vitro pathway for maresin biosynthesis. In addition, epoxidation of 14S-HpDHA is negatively regulated through allosteric oxylipin binding to h15-LOX-1 and h12-LOX. For h15-LOX-1, 14S-HpDHA (Kd = 6.0 µM), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) (Kd = 3.5 µM), and 14S-hydroxy-7Z,10Z,12E,16Z,19Z-docosapentaenoic acid (14S-HDPAω-3) (Kd = 4.0 µM) were shown to decrease 13S,14S-epoxy-DHA production. h12-LOX was also shown to be allosterically regulated by 14S-HpDHA (Kd = 3.5 µM) and 14S-HDPAω-3 (Kd = 4.0 µM); however, 12S-HETE showed no effect, indicating for the first time an allosteric response by h12-LOX. Finally, 14S-HpDHA inhibited platelet aggregation at a submicrololar concentration, which may have implications in the benefits of diets rich in DHA. These in vitro biosynthetic pathways may help guide in vivo maresin biosynthetic investigations and possibly direct therapeutic interventions.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/metabolism , Allosteric Regulation , Arachidonate 12-Lipoxygenase/isolation & purification , Arachidonate 15-Lipoxygenase/isolation & purification , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/chemistry , Humans , Molecular Structure , Platelet Aggregation , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
8.
Biochemistry ; 59(42): 4118-4130, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33048542

ABSTRACT

The oxylipins, 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid (5S,12S-diHETE) and 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid (5S,15S-diHETE), have been identified in cell exudates and have chemotactic activity toward eosinophils and neutrophils. Their biosynthesis has been proposed to occur by sequential oxidations of arachidonic acid (AA) by lipoxygenase enzymes, specifically through oxidation of AA by h5-LOX followed by h12-LOX, h15-LOX-1, or h15-LOX-2. In this work, h15-LOX-1 demonstrates altered positional specificity when reacting with 5S-HETE, producing 90% 5S,12S-diHETE, instead of 5S,15S-diHETE, with kinetics 5-fold greater than that of h12-LOX. This is consistent with previous work in which h15-LOX-1 reacts with 7S-HDHA, producing the noncanonical, DHA-derived, specialized pro-resolving mediator, 7S,14S-diHDHA. It is also determined that oxygenation of 5S-HETE by h15-LOX-2 produces 5S,15S-diHETE and its biosynthetic kcat/KM flux is 2-fold greater than that of h15-LOX-1, suggesting that h15-LOX-2 may have a greater role in lipoxin biosynthesis than previously thought. In addition, it is shown that oxygenation of 12S-HETE and 15S-HETE by h5-LOX is kinetically slow, suggesting that the first step in the in vitro biosynthesis of both 5S,12S-diHETE and 5S,15S-diHETE is the production of 5S-HETE.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Lipoxins/metabolism , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Humans , Hydroxyeicosatetraenoic Acids/metabolism
9.
J Lipid Res ; 61(7): 1087-1103, 2020 07.
Article in English | MEDLINE | ID: mdl-32404334

ABSTRACT

The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1. The oxidation at C14 of DHA by h12-LOX was expected, but the noncanonical reaction of h15-LOX-1 to make over 80% 7S,14S-diHDHA was larger than expected. Results of computer modeling suggested that the alcohol on C7 of 7S-HDHA hydrogen bonds with the backbone carbonyl of Ile399, forcing the hydrogen abstraction from C12 to oxygenate on C14 but not C17. This result raised questions regarding the synthesis of RvD5. Strikingly, we found that h15-LOX-2 oxygenates 7S-HDHA almost exclusively at C17, forming RvD5 with faster kinetics than does h15-LOX-1. The presence of h15-LOX-2 in neutrophils and macrophages suggests that it may have a greater role in biosynthesizing SPMs than previously thought. We also determined that the reactions of h5-LOX with 14(S)-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-DHA and 17(S)-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-DHA are kinetically slow compared with DHA, suggesting that these reactions may be minor biosynthetic routes in vivo. Additionally, we show that 7S,14S-diHDHA and RvD5 have anti-aggregation properties with platelets at low micromolar potencies, which could directly regulate clot resolution.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/biosynthesis , Blood Platelets/metabolism , Docosahexaenoic Acids/chemistry , Humans
10.
Biochemistry ; 58(6): 848-857, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30565457

ABSTRACT

Human platelet ALOX12 (hALOX12 or h12-LOX) has been implicated in a variety of human diseases. The present study investigates the active site of hALOX12 to more thoroughly understand how it positions the substrate and achieves nearly perfect regio- and stereospecificities (i.e., 100 ± 5% of the 12(S)-hydroperoxide product), utilizing site-directed mutagenesis. Specifically, we have determined that Arg402 is not as important in substrate binding as previously seen for hALOX15 but that His596 may play a role in anchoring the carboxy terminal of the arachidonic acid during catalysis. In addition, Phe414 creates a π-stacking interaction with a double bond of arachidonic acid (Δ11), and Ala417/Val418 define the bottom of the cavity. However, the influence of Ala417/Val418 on the profile is markedly less for hALOX12 than that seen in hALOX15. Mutating these two residues to larger amino acids (Ala417Ile/Val418Met) only increased the generation of 15-HpETE by 24 ± 2%, but conversely, smaller residues at these positions converted hALOX15 to almost 100% hALOX12 reactivity [Gan et al. (1996) J. Biol. Chem. 271, 25412-25418]. However, we were able to increase 15-HpETE to 46 ± 3% by restricting the width of the active site with the Ala417Ile/Val418Met/Ser594Thr mutation, indicating both depth and width of the active site are important. Finally, residue Leu407 is shown to play a critical role in positioning the substrate correctly, as seen by the increase of 15-HpETE to 21 ± 1% for the single Leu407Gly mutant. These results outline critical differences between the active site requirements of hALOX12 relative to hALOX15 and explain both their product specificity and inhibitory differences.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Arachidonate 12-Lipoxygenase/chemistry , Arachidonate 12-Lipoxygenase/genetics , Blood Platelets/enzymology , Catalysis , Catalytic Domain , Humans , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Protein Binding , Static Electricity , Substrate Specificity
11.
J Biol Chem ; 293(11): 4014-4025, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29414793

ABSTRACT

Protein-protein interactions (PPIs) are an important category of putative drug targets. Improvements in high-throughput screening (HTS) have significantly accelerated the discovery of inhibitors for some categories of PPIs. However, methods suitable for screening multiprotein complexes (e.g. those composed of three or more different components) have been slower to emerge. Here, we explored an approach that uses reconstituted multiprotein complexes (RMPCs). As a model system, we chose heat shock protein 70 (Hsp70), which is an ATP-dependent molecular chaperone that interacts with co-chaperones, including DnaJA2 and BAG2. The PPIs between Hsp70 and its co-chaperones stimulate nucleotide cycling. Thus, to re-create this ternary protein system, we combined purified human Hsp70 with DnaJA2 and BAG2 and then screened 100,000 diverse compounds for those that inhibited co-chaperone-stimulated ATPase activity. This HTS campaign yielded two compounds with promising inhibitory activity. Interestingly, one inhibited the PPI between Hsp70 and DnaJA2, whereas the other seemed to inhibit the Hsp70-BAG2 complex. Using secondary assays, we found that both compounds inhibited the PPIs through binding to allosteric sites on Hsp70, but neither affected Hsp70's intrinsic ATPase activity. Our RMPC approach expands the toolbox of biochemical HTS methods available for studying difficult-to-target PPIs in multiprotein complexes. The results may also provide a starting point for new chemical probes of the Hsp70 system.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Apoptosis Regulatory Proteins/antagonists & inhibitors , Drug Discovery , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/antagonists & inhibitors , High-Throughput Screening Assays , Pharmaceutical Preparations/metabolism , Protein Interaction Maps/drug effects , Adenosine Triphosphatases/metabolism , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Protein Binding
12.
Nature ; 498(7452): 123-6, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23676670

ABSTRACT

The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.


Subject(s)
Escherichia coli Proteins/metabolism , Methyltransferases/metabolism , One-Carbon Group Transferases/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , S-Adenosylmethionine/analogs & derivatives , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Biocatalysis , Biosynthetic Pathways , Catalytic Domain , Crystallography, X-Ray , Cyclohexanecarboxylic Acids/metabolism , Cyclohexenes/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Ligands , Methyltransferases/deficiency , Methyltransferases/genetics , Models, Molecular , Molecular Weight , One-Carbon Group Transferases/chemistry , Protein Multimerization , Protein Structure, Secondary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer/chemistry , S-Adenosylmethionine/biosynthesis , Uridine/analogs & derivatives , Uridine/chemistry , Uridine/metabolism
13.
Proc Natl Acad Sci U S A ; 113(38): E5645-54, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601647

ABSTRACT

AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and predominantly assemble as heterotetramers in the brain. Recently, the crystal structures of homotetrameric GluA2 demonstrated that AMPARs are assembled with two pairs of conformationally distinct subunits, in a dimer of dimers formation. However, the structure of heteromeric AMPARs remains unclear. Guided by the GluA2 structure, we performed cysteine mutant cross-linking experiments in full-length GluA1/A2, aiming to draw the heteromeric AMPAR architecture. We found that the amino-terminal domains determine the first level of heterodimer formation. When the dimers further assemble into tetramers, GluA1 and GluA2 subunits have preferred positions, possessing a 1-2-1-2 spatial assembly. By swapping the critical sequences, we surprisingly found that the spatial assembly pattern is controlled by the excisable signal peptides. Replacements with an unrelated GluK2 signal peptide demonstrated that GluA1 signal peptide plays a critical role in determining the spatial priority. Our study thus uncovers the spatial assembly of an important type of glutamate receptors in the brain and reveals a novel function of signal peptides.


Subject(s)
Brain/metabolism , Receptors, AMPA/chemistry , Animals , Brain/pathology , Dimerization , Humans , Protein Conformation , Protein Sorting Signals/genetics , Rats , Receptors, AMPA/genetics , Synaptic Transmission
14.
Trends Biochem Sci ; 39(8): 363-71, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24998033

ABSTRACT

The rapid growth of the number of protein sequences that can be inferred from sequenced genomes presents challenges for function assignment, because only a small fraction (currently <1%) has been experimentally characterized. Bioinformatics tools are commonly used to predict functions of uncharacterized proteins. Recently, there has been significant progress in using protein structures as an additional source of information to infer aspects of enzyme function, which is the focus of this review. Successful application of these approaches has led to the identification of novel metabolites, enzyme activities, and biochemical pathways. We discuss opportunities to elucidate systematically protein domains of unknown function, orphan enzyme activities, dead-end metabolites, and pathways in secondary metabolism.


Subject(s)
Models, Molecular , Proteins/chemistry , Proteins/metabolism , Animals , Computer Simulation , Humans , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
15.
Bioorg Med Chem ; 24(21): 5380-5387, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27647374

ABSTRACT

Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.


Subject(s)
Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Catalytic Domain/genetics , Lipoxygenase Inhibitors/metabolism , Lipoxygenase Inhibitors/pharmacology , Mutation , Dose-Response Relationship, Drug , Humans , Kinetics , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Structure-Activity Relationship
16.
Bioorg Med Chem ; 24(6): 1183-90, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26899595

ABSTRACT

Human reticulocyte 12/15-lipoxygenase (h12/15-LOX) is a lipid-oxidizing enzyme that can directly oxidize lipid membranes in the absence of a phospholipase, leading to a direct attack on organelles, such as the mitochondria. This cytotoxic activity of h12/15-LOX is up-regulated in neurons and endothelial cells after a stroke and thought to contribute to both neuronal cell death and blood-brain barrier leakage. The discovery of inhibitors that selectively target recombinant h12/15-LOX in vitro, as well as possessing activity against the murine ortholog ex vivo, could potentially support a novel therapeutic strategy for the treatment of stroke. Herein, we report a new family of inhibitors discovered in a High Throughput Screen (HTS) that are selective and potent against recombinant h12/15-LOX and cellular mouse 12/15-LOX (m12/15-LOX). MLS000099089 (compound 99089), the parent molecule, exhibits an IC50 potency of 3.4±0.5 µM against h12/15-LOX in vitro and an ex vivo IC50 potency of approximately 10 µM in a mouse neuronal cell line, HT-22. Compound 99089 displays greater than 30-fold selectivity versus h5-LOX and COX-2, 15-fold versus h15-LOX-2 and 10-fold versus h12-LOX, when tested at 20 µM inhibitor concentration. Steady-state inhibition kinetics reveals that the mode of inhibition of 99089 against h12/15-LOX is that of a mixed inhibitor with a Kic of 1.0±0.08 µM and a Kiu of 6.0±3.3 µM. These data indicate that 99089 and related derivatives may serve as a starting point for the development of anti-stroke therapeutics due to their ability to selectively target h12/15-LOX in vitro and m12/15-LOX ex vivo.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Lipoxygenase Inhibitors/chemistry , Mice , Models, Molecular , Molecular Structure , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity
17.
Proc Natl Acad Sci U S A ; 109(11): 4122-7, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22392983

ABSTRACT

The rapid advance in genome sequencing presents substantial challenges for protein functional assignment, with half or more of new protein sequences inferred from these genomes having uncertain assignments. The assignment of enzyme function in functionally diverse superfamilies represents a particular challenge, which we address through a combination of computational predictions, enzymology, and structural biology. Here we describe the results of a focused investigation of a group of enzymes in the enolase superfamily that are involved in epimerizing dipeptides. The first members of this group to be functionally characterized were Ala-Glu epimerases in Eschericiha coli and Bacillus subtilis, based on the operon context and enzymological studies; these enzymes are presumed to be involved in peptidoglycan recycling. We have subsequently studied more than 65 related enzymes by computational methods, including homology modeling and metabolite docking, which suggested that many would have divergent specificities;, i.e., they are likely to have different (unknown) biological roles. In addition to the Ala-Phe epimerase specificity reported previously, we describe the prediction and experimental verification of: (i) a new group of presumed Ala-Glu epimerases; (ii) several enzymes with specificity for hydrophobic dipeptides, including one from Cytophaga hutchinsonii that epimerizes D-Ala-D-Ala; and (iii) a small group of enzymes that epimerize cationic dipeptides. Crystal structures for certain of these enzymes further elucidate the structural basis of the specificities. The results highlight the potential of computational methods to guide experimental characterization of enzymes in an automated, large-scale fashion.


Subject(s)
Dipeptides/metabolism , Multigene Family , Phosphopyruvate Hydratase/metabolism , Racemases and Epimerases/metabolism , Sequence Homology, Amino Acid , Catalytic Domain , Cations , Cluster Analysis , Computational Biology , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Racemases and Epimerases/chemistry , Substrate Specificity
18.
Biochemistry ; 53(25): 4192-203, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24926996

ABSTRACT

The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry 46, 9564-9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry 48, 11546-11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde.


Subject(s)
Agrobacterium tumefaciens/enzymology , Bacterial Proteins/metabolism , Hydro-Lyases/metabolism , Sugar Acids/metabolism , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Genome, Bacterial , Hexuronic Acids/metabolism , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Stereoisomerism
19.
J Chem Inf Model ; 54(6): 1687-99, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24802635

ABSTRACT

Enzymes in the glutathione transferase (GST) superfamily catalyze the conjugation of glutathione (GSH) to electrophilic substrates. As a consequence they are involved in a number of key biological processes, including protection of cells against chemical damage, steroid and prostaglandin biosynthesis, tyrosine catabolism, and cell apoptosis. Although virtual screening has been used widely to discover substrates by docking potential noncovalent ligands into active site clefts of enzymes, docking has been rarely constrained by a covalent bond between the enzyme and ligand. In this study, we investigate the accuracy of docking poses and substrate discovery in the GST superfamily, by docking 6738 potential ligands from the KEGG and MetaCyc compound libraries into 14 representative GST enzymes with known structures and substrates using the PLOP program [ Jacobson Proteins 2004 , 55 , 351 ]. For X-ray structures as receptors, one of the top 3 ranked models is within 3 Å all-atom root mean square deviation (RMSD) of the native complex in 11 of the 14 cases; the enrichment LogAUC value is better than random in all cases, and better than 25 in 7 of 11 cases. For comparative models as receptors, near-native ligand-enzyme configurations are often sampled but difficult to rank highly. For models based on templates with the highest sequence identity, the enrichment LogAUC is better than 25 in 5 of 11 cases, not significantly different from the crystal structures. In conclusion, we show that covalent docking can be a useful tool for substrate discovery and point out specific challenges for future method improvement.


Subject(s)
Glutathione Transferase/metabolism , Molecular Docking Simulation , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Databases, Protein , Glutathione Transferase/chemistry , Humans , Ligands , Substrate Specificity
20.
Biochemistry ; 52(33): 5511-3, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23901785

ABSTRACT

The stereospecificity of d-glucarate dehydratase (GlucD) is explored by QM/MM calculations. Both the substrate binding and the chemical steps of GlucD contribute to substrate specificity. Although the identification of transition states remains computationally intensive, we suggest that QM/MM computations on ground states or intermediates can capture aspects of specificity that cannot be obtained using docking or molecular mechanics methods.


Subject(s)
Glucaric Acid/chemistry , Hydro-Lyases/chemistry , Molecular Dynamics Simulation , Quantum Theory , Adipates/chemistry , Adipates/metabolism , Biocatalysis , Glucaric Acid/metabolism , Hydro-Lyases/metabolism , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Tertiary , Stereoisomerism , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL