Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35429403

ABSTRACT

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Subject(s)
Respiratory Syncytial Virus Infections , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/deficiency , Respiratory Syncytial Virus, Human
2.
J Immunol ; 200(2): 768-774, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29212905

ABSTRACT

Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-ß induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites.


Subject(s)
DNA, Protozoan/metabolism , Interferon Type I/metabolism , Nucleotidyltransferases/metabolism , Plasmodium falciparum/genetics , Adolescent , Adult , Cells, Cultured , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Humans , Interferon Regulatory Factor-3/metabolism , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Male , Membrane Proteins/metabolism , Middle Aged , Nucleotides, Cyclic/metabolism , Phosphorylation , Signal Transduction , Young Adult
3.
Am J Physiol Cell Physiol ; 317(4): C687-C700, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31268779

ABSTRACT

Alcoholic liver disease results from a combination of immune and metabolic pathogenic events. In addition to liver injury, chronic alcohol consumption also causes adipose tissue inflammation. The specific immune mechanisms that drive this process are unknown. Here, we sought to determine the role of the innate immune receptor Toll-like receptor 4 (TLR4) in alcohol-induced adipose tissue inflammation. Using a model of chronic, multiple-binge alcohol exposure, we showed that alcohol-mediated accumulation of proinflammatory adipose tissue macrophages was absent in global TLR4 knockout mice. Proinflammatory macrophage accumulation did not depend on macrophage TLR4 expression; LysMCre-driven deletion of Tlr4 from myeloid cells did not affect circulating endotoxin or the accumulation of M1 macrophages in adipose tissue following alcohol exposure. Proinflammatory cytokine/chemokine production in the adipose stromal vascular fraction also occurred independently of TLR4. Finally, the levels of other adipose immune cells, such as dendritic cells, neutrophils, B cells, and T cells, were modulated by chronic, multiple-binge alcohol and the presence of TLR4. Together, these data indicate that TLR4 expression on cells, other than myeloid cells, is important for the alcohol-induced increase in proinflammatory adipose tissue macrophages.


Subject(s)
Adipocytes/drug effects , Adipose Tissue/drug effects , Ethanol/pharmacology , Macrophages/drug effects , Toll-Like Receptor 4/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Macrophages/metabolism , Mice, Transgenic , Obesity/drug therapy , Obesity/metabolism
4.
J Biol Chem ; 292(14): 5634-5644, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28209713

ABSTRACT

Bacterial sepsis involves a complex interaction between the host immune response and bacterial LPS. LPS binds Toll-like receptor (TLR) 4, which leads to the release of proinflammatory cytokines that are essential for a potent innate immune response against pathogens. The innate immune system is tightly regulated, as excessive inflammation can lead to organ failure and death. MicroRNAs have recently emerged as important regulators of the innate immune system. Here we determined the function of miR-718, which is conserved across mammals and overlaps with the 5' UTR of the interleukin 1 receptor-associated kinase (IRAK1) gene. As IRAK1 is a key component of innate immune signaling pathways that are downstream of most TLRs, we hypothesized that miR-718 helps regulate the innate immune response. Activation of TLR4, but not TLR3, induced the expression of miR-718 in macrophages. miR-718 expression was also induced in the spleens of mice upon LPS injection. miR-718 modulates PI3K/Akt signaling by directly down-regulating phosphatase and tensin homolog (PTEN), thereby promoting phosphorylation of Akt, which leads to a decrease in proinflammatory cytokine production. Phosphorylated Akt induces let-7e expression, which, in turn, down-regulates TLR4 and further diminishes TLR4-mediated proinflammatory signals. Decreased miR-718 expression is associated with bacterial burden during Neisseria gonorrhoeae infection and alters the infection dynamics of N. gonorrhoeae in vitro Furthermore, miR-718 regulates the induction of LPS tolerance in macrophages. We propose a role for miR-718 in controlling TLR4 signaling and inflammatory cytokine signaling through a negative feedback regulation loop involving down-regulation of TLR4, IRAK1, and NF-κB.


Subject(s)
5' Untranslated Regions , Cytokines/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction , Animals , Cytokines/genetics , Gonorrhea/genetics , Gonorrhea/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , MicroRNAs/genetics , Neisseria gonorrhoeae/metabolism , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
5.
J Immunol ; 196(1): 29-33, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26590313

ABSTRACT

Innate sensing of nucleic acids lies at the heart of antiviral immunity. During viral infection, dying cells may also release nucleic acids into the tissue microenvironment. It is unknown what effect such host signals have on the quality or duration of the immune response to viruses. In this study, we uncovered an immune-regulatory pathway that tempers the intensity of the host response to influenza A virus (IAV) infection. We found that host-derived DNA accumulates in the lung microenvironment during IAV infection. Ablation of DNA in the lung resulted in increased mortality, increased cellular recruitment, and increased inflammation following IAV challenge. The released DNA, in turn, was sensed by the DNA receptor absent in melanoma 2. Aim2(-/-) mice showed similarly exaggerated immune responses to IAV. Taken together, our results identify a novel mechanism of cross-talk between pathogen- and damage-associated molecular pattern-sensing pathways, wherein sensing of host-derived DNA limits immune-mediated damage to infected tissues.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA/immunology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/immunology , Animals , Cellular Microenvironment/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Inflammation/immunology , Lung/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
J Biol Chem ; 291(52): 26794-26805, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27810900

ABSTRACT

Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/Interleukin-1R (TIR) domain-containing adapter-inducing interferon-ß (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4 Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4 In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors, TRAM or TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the pro-apoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Endoplasmic Reticulum Stress , Hepatocytes/pathology , Interferon Regulatory Factor-3/physiology , Liver Cirrhosis/etiology , Membrane Proteins/physiology , Receptor, Interferon alpha-beta/physiology , Animals , Carbon Tetrachloride/toxicity , Cells, Cultured , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Female , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
PLoS Pathog ; 11(7): e1005043, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26200783

ABSTRACT

Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or 'double' tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the 'double' tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.


Subject(s)
Antigens, Bacterial/immunology , Complement Inactivating Agents/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Outer Membrane Proteins/metabolism , Complement Activation , Humans , Mice , Streptococcal Infections/immunology , Virulence
8.
Adv Anat Embryol Cell Biol ; 223: 49-75, 2017.
Article in English | MEDLINE | ID: mdl-28528439

ABSTRACT

Innate immune responses play a major role in the control of herpes simplex virus (HSV) infections, and a multiplicity of mechanisms have emerged as a result of human evolution to sense and respond to HSV infections. HSV in turn has evolved a number of ways to evade immune detection and to blunt human innate immune responses. In this review, we summarize the major host innate immune mechanisms and the HSV evasion mechanisms that have evolved. We further discuss how disease can result if this equilibrium between virus and host response is disrupted.


Subject(s)
Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Immunity, Innate , Animals , Host-Pathogen Interactions/immunology , Humans , Immune Evasion
9.
Mol Biol Evol ; 32(6): 1519-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25713211

ABSTRACT

Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutations.


Subject(s)
Alphainfluenzavirus/genetics , Genome, Viral , Reassortant Viruses/genetics , Selection, Genetic , Animals , Computational Biology , Dogs , Evolution, Molecular , Gene Frequency , Genotype , Hemagglutinin Glycoproteins, Influenza Virus/genetics , High-Throughput Nucleotide Sequencing , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Limit of Detection , Madin Darby Canine Kidney Cells , Nucleoproteins/genetics , Sequence Analysis, RNA
10.
Blood ; 124(5): 791-802, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-24755410

ABSTRACT

Viral infections have been associated with reduced platelet counts, the biological significance of which has remained elusive. Here, we show that infection with encephalomyocarditis virus (EMCV) rapidly reduces platelet count, and this response is attributed to platelet Toll-like receptor 7 (TLR7). Platelet-TLR7 stimulation mediates formation of large platelet-neutrophil aggregates, both in mouse and human blood. Intriguingly, this process results in internalization of platelet CD41-fragments by neutrophils, as assessed biochemically and visualized by microscopy, with no influence on platelet prothrombotic properties. The mechanism includes TLR7-mediated platelet granule release, translocation of P-selectin to the cell surface, and a consequent increase in platelet-neutrophil adhesion. Viral infection of platelet-depleted mice also led to increased mortality. Transfusion of wild-type, TLR7-expressing platelets into TLR7-deficient mice caused a drop in platelet count and increased survival post EMCV infection. Thus, this study identifies a new link between platelets and their response to single-stranded RNA viruses that involves activation of TLR7. Finally, platelet-TLR7 stimulation is independent of thrombosis and has implications to the host immune response and survival.


Subject(s)
Blood Platelets/immunology , Cardiovirus Infections/immunology , Encephalomyocarditis virus/immunology , Membrane Glycoproteins/immunology , Thrombosis , Toll-Like Receptor 7/immunology , Animals , Blood Platelets/metabolism , Cardiovirus Infections/blood , Cell Degranulation/immunology , Encephalomyocarditis virus/metabolism , Female , Humans , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Male , Membrane Glycoproteins/blood , Mice , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Platelet Count , Secretory Vesicles/immunology , Secretory Vesicles/metabolism , Toll-Like Receptor 7/blood
11.
Proc Natl Acad Sci U S A ; 110(41): 16544-9, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24052526

ABSTRACT

Emerging evidence suggests that innate immunity drives alcoholic liver disease (ALD) and that the interferon regulatory factor 3 (IRF3),a transcription factor regulating innate immune responses, is indispensable for the development of ALD. Here we report that IRF3 mediates ALD via linking endoplasmic reticulum (ER) stress with apoptotic signaling in hepatocytes. We found that ethanol induced ER stress and triggered the association of IRF3 with the ER adaptor, stimulator of interferon genes (STING), as well as subsequent phosphorylation of IRF3. Activated IRF3 associated with the proapoptotic molecule Bax [B-cell lymphoma 2 (Bcl2)-associated X protein] and contributed to hepatocyte apoptosis. Deficiency of STING prevented IRF3 phosphorylation by ethanol or ER stress, and absence of IRF3 prevented hepatocyte apoptosis. The pathogenic role of IRF3 in ALD was independent of inflammation or Type-I interferons. Thus, STING and IRF3 are key determinants of ALD, linking ER stress signaling with the mitochondrial pathway of hepatocyte apoptosis.


Subject(s)
Apoptosis/physiology , Endoplasmic Reticulum Stress/physiology , Immunity, Innate/immunology , Interferon Regulatory Factor-3/metabolism , Liver Diseases, Alcoholic/physiopathology , Membrane Proteins/metabolism , Signal Transduction/immunology , Animals , Hepatocytes/physiology , Liver/metabolism , Liver Diseases, Alcoholic/immunology , Mice , Mice, Knockout , Phosphorylation , Regression Analysis , Triglycerides/metabolism
12.
J Biol Chem ; 289(34): 23568-81, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25002588

ABSTRACT

The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1ß was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity.


Subject(s)
DNA Viruses/immunology , Interferon Type I/physiology , Nuclear Proteins/physiology , Phosphoproteins/physiology , RNA Viruses/immunology , Transcription, Genetic , Base Sequence , DNA Primers , Enzyme-Linked Immunosorbent Assay , Gene Knockdown Techniques , Gene Silencing , HEK293 Cells , Humans , Interferon Type I/biosynthesis , Interferon Type I/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Polymerase Chain Reaction
13.
J Hepatol ; 63(5): 1147-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26100496

ABSTRACT

BACKGROUND & AIMS: The inflammasome is a well-characterized inducer of inflammation in alcoholic steatohepatitis (ASH). Inflammasome activation requires two signals for mature interleukin (IL)-1ß production. Here we asked whether metabolic danger signals trigger inflammasome activation in ASH. METHODS: Wild-type mice, ATP receptor 2x7 (P2rx7)-KO mice, or mice overexpressing uricase were fed Lieber-DeCarli ethanol or control diet. We also implemented a pharmacological approach in which mice were treated with probenecid or allopurinol. RESULTS: The sterile danger signals, ATP and uric acid, were increased in the serum and liver of alcohol-fed mice. Depletion of uric acid or ATP, or lack of ATP signaling attenuated ASH and prevented inflammasome activation and its major downstream cytokine, IL-1ß. Pharmacological depletion of uric acid with allopurinol provided significant protection from alcohol-induced inflammatory response, steatosis and liver damage, and additional protection was achieved in mice treated with probenecid, which depletes uric acid and blocks ATP-induced P2rx7 signaling. We found that alcohol-damaged hepatocytes released uric acid and ATP in vivo and in vitro and that these sterile danger signals activated the inflammasome in LPS-exposed liver mononuclear cells. CONCLUSIONS: Our data indicate that the second signal in inflammasome activation and IL-1ß production in ASH results from the endogenous danger signals, uric acid and ATP. Inhibition of signaling triggered by uric acid and ATP may have therapeutic implications in ASH.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Allopurinol/therapeutic use , Fatty Liver, Alcoholic/metabolism , Hepatocytes/metabolism , Inflammasomes/metabolism , Probenecid/therapeutic use , Uric Acid/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Adjuvants, Pharmaceutic/therapeutic use , Animals , Antimetabolites/therapeutic use , Cells, Cultured , Disease Models, Animal , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/pathology , Female , Hepatocytes/drug effects , Hepatocytes/pathology , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Signal Transduction , Uric Acid/metabolism
14.
J Virol ; 88(1): 272-81, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155392

ABSTRACT

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y resistance mutation fixed reproducibly within the population. The presence of the H274Y mutation in the viral population, at either a low or a high frequency, led to measurable changes in the neuraminidase inhibition assay. Surprisingly, fixation of the resistance mutation was not accompanied by alterations of viral population diversity or differentiation, and oseltamivir did not alter the selective environment. While the neighboring K248E mutation was also a target of positive selection prior to H274Y fixation, H274Y was the primary beneficial mutation in the population. In addition, once evolved, the H274Y mutation persisted after the withdrawal of the drug, even when not fixed in viral populations. We conclude that only selection of H274Y is required for oseltamivir resistance and that H274Y is not deleterious in the absence of the drug. These collective results could offer an explanation for the recent reproducible rise in oseltamivir resistance in seasonal H1N1 IAV strains in humans.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Evolution, Molecular , Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , Oseltamivir/pharmacology , Animals , Cell Line , Dogs , High-Throughput Screening Assays , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Inhibitory Concentration 50 , Mutation , Viral Plaque Assay
15.
J Immunol ; 190(7): 3525-32, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23427254

ABSTRACT

Polymeric microparticles have been widely investigated as platforms for delivery of drugs, vaccines, and imaging contrast agents and are increasingly used in a variety of clinical applications. Microparticles activate the inflammasome complex and induce the processing and secretion of IL-1ß, a key innate immune cytokine. Recent work suggests that although receptors are clearly important for particle phagocytosis, other physical characteristics, especially shape, play an important role in the way microparticles activate cells. We examined the role of particle surface texturing not only on uptake efficiency but also on the subsequent immune cell activation of the inflammasome. Using a method based on emulsion processing of amphiphilic block copolymers, we prepared microparticles with similar overall sizes and surface chemistries but having either smooth or highly microtextured surfaces. In vivo, textured (budding) particles induced more rapid neutrophil recruitment to the injection site. In vitro, budding particles were more readily phagocytosed than smooth particles and induced more lipid raft recruitment to the phagosome. Remarkably, budding particles also induced stronger IL-1ß secretion than smooth particles through activation of the NLRP3 inflammasome. These findings demonstrate a pronounced role of particle surface topography in immune cell activation, suggesting that shape is a major determinant of inflammasome activation.


Subject(s)
Immunity, Innate , Inflammasomes/immunology , Polymers , Animals , Carrier Proteins/metabolism , Humans , Interleukin-1/metabolism , Interleukin-1beta/metabolism , Macrophages/immunology , Membrane Microdomains/metabolism , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils/immunology , Neutrophils/metabolism , Particle Size , Phagocytosis/immunology , Polymers/chemistry , Signal Transduction , Surface Properties
16.
J Biol Chem ; 288(12): 8061-8073, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23362274

ABSTRACT

Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza, Human/drug therapy , Polysaccharides/pharmacology , Sialic Acids/pharmacology , Animals , Antiviral Agents/administration & dosage , Cell Line , Chlorocebus aethiops , Dogs , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Hemagglutination/drug effects , Humans , Influenza A virus/physiology , Liposomes , Mice , Mice, Inbred C57BL , Polysaccharides/administration & dosage , Rous sarcoma virus/drug effects , Sendai virus/drug effects , Sialic Acids/administration & dosage , Vero Cells , Virus Replication/drug effects
17.
Liver Int ; 34(9): 1402-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24650018

ABSTRACT

BACKGROUND & AIMS: Inflammation promotes the progression of non-alcoholic steatohepatitis (NASH). Toll-like receptor 4 (TLR4) and TLR9 activation through myeloid differentiation primary response gene 88 (MyD88) and production of mature interleukin-1ß (IL-1ß) via inflammasome activation contribute to steatohepatitis. Here, we investigated the inter-relationship between TLR signalling and inflammasome activation in dietary steatohepatitis. METHODS: Wild type (WT), TLR4- and MyD88-deficient (KO) mice received methionine-choline-deficient (MCD) or -supplemented (MCS) diets for 5 weeks and a subset was challenged with TLR9 ligand CpG-DNA. RESULTS: TLR4, TLR9, AIM2 (absent in melanoma 2) and NLRP3 (NLR family pyrin domain containing 3) inflammasome mRNA, and mature IL-1ß protein levels were increased in MCD diet-induced steatohepatitis compared to MCS controls. TLR9 stimulation resulted in greater up-regulation of the DNA-sensing AIM2 expression and IL-1ß production in livers of MCD compared to MCS diet-fed mice. High mobility group box 1 (HMGB1), a TLR9-activating danger molecule and phospho-HMGB1 protein levels were also increased in livers of MCD diet-fed mice. MyD88- but not TLR4-deficiency prevented up-regulation of AIM2, NLRP3 mRNA and IL-1ß protein production in dietary steatohepatitis. Selective MyD88 deficiency either in bone marrow (BM)-derived or non-BM-derived cells attenuated hepatic up-regulation of inflammasome mRNA, caspase-1 activation and IL-1ß protein production, but only BM-derived cell-specific MyD88-deficiency attenuated liver injury. CONCLUSIONS: Our data demonstrate that both bone marrow-derived and non-BM-derived cells contribute to inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. We show that AIM2 inflammasome expression and activation are further augmented by TLR9 ligands in dietary steatohepatitis.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Inflammasomes/metabolism , Myeloid Differentiation Factor 88/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , Bone Marrow Cells/metabolism , Choline Deficiency , Diet , Immunoprecipitation , Methionine/deficiency , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism
18.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755212

ABSTRACT

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Subject(s)
ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Mice, Knockout , Myocarditis , Animals , Encephalomyocarditis virus/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Myocarditis/immunology , Myocarditis/virology , Humans , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Male , HEK293 Cells
19.
J Virol ; 86(20): 11254-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22875973

ABSTRACT

Type I interferons (IFNs), predominantly IFN-α and -ß, play critical roles in both innate and adaptive immune responses against viral infections. Interferon regulatory factor 7 (IRF7), a key innate immune molecule in the type I IFN signaling pathway, is essential for the type I IFN response to many viruses, including lymphocytic choriomeningitis virus (LCMV). Here, we show that although IRF7 knockout (KO) mice failed to control the replication of LCMV in the early stages of infection, they were capable of clearing LCMV infection. Despite the lack of type I IFN production, IRF7 KO mice generated normal CD4(+) T cell responses, and the expansion of naïve CD8(+) T cells into primary CD8(+) T cells specific for LCMV GP(33-41) was relatively normal. In contrast, the expansion of the LCMV NP(396)-specific CD8(+) T cells was severely impaired in IRF7 KO mice. We demonstrated that this defective CD8(+) T cell response is due neither to an impaired antigen-presenting system nor to any intrinsic role of IRF7 in CD8(+) T cells. The lack of a type I IFN response in IRF7 KO mice did not affect the formation of memory CD8(+) T cells. Thus, the present study provides new insight into the impact of the innate immune system on viral pathogenesis and demonstrates the critical contribution of innate immunity in controlling virus replication in the early stages of infection, which may shape the quality of CD8(+) T cell responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon Regulatory Factor-7/immunology , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Immunity, Innate , Interferon Regulatory Factor-7/genetics , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Virus Replication
20.
J Virol ; 86(4): 2273-81, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22171256

ABSTRACT

Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.


Subject(s)
Central Nervous System/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/physiology , Immunity, Innate , Animals , Central Nervous System/virology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Humans , Interferon Type I/immunology , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/immunology , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL