Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Med Genet A ; 182(3): 446-453, 2020 03.
Article in English | MEDLINE | ID: mdl-31876365

ABSTRACT

Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Hematologic Diseases/physiopathology , Neoplasm Proteins/genetics , Vestibular Diseases/genetics , Vestibular Diseases/physiopathology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Adolescent , Body Height , Body Mass Index , Body Weight , Child , Child, Preschool , Face/physiopathology , Female , Growth Charts , Hematologic Diseases/diagnosis , Histone Demethylases/genetics , Humans , Male , Mutation/genetics , Vestibular Diseases/diagnosis
2.
Nat Genet ; 40(9): 1119-23, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18677313

ABSTRACT

Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats-like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-beta-binding protein 1. In addition, we observed a significant increase in total and active TGF-beta in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-beta signaling and may be the underlying mechanism of geleophysic dysplasia.


Subject(s)
Abnormalities, Multiple/genetics , Extracellular Matrix Proteins/genetics , Growth Disorders/genetics , Heart Valves/abnormalities , Transforming Growth Factor beta/metabolism , Biological Availability , Cell Line , Child , Child, Preschool , Hand Deformities, Congenital/genetics , Heart Defects, Congenital/genetics , Humans , Mutation
3.
Am J Hum Genet ; 92(1): 144-9, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23273569

ABSTRACT

Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.


Subject(s)
Exome , Mutation , Osteochondrodysplasias/genetics , Phosphoric Monoester Hydrolases/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Sequence Analysis, DNA/methods , Young Adult
4.
Am J Hum Genet ; 93(1): 141-9, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23810378

ABSTRACT

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.


Subject(s)
Growth Disorders/genetics , Hypercalcemia/genetics , Insulin Resistance/genetics , Metabolic Diseases/genetics , Nephrocalcinosis/genetics , Phosphatidylinositol 3-Kinases/metabolism , DNA Mutational Analysis , Exome , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Predisposition to Disease , Gestational Age , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin/pharmacology , Male , Mutation , Pedigree , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
5.
Am J Hum Genet ; 92(4): 621-6, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23541344

ABSTRACT

Scalp-ear-nipple (SEN) syndrome is a rare, autosomal-dominant disorder characterized by cutis aplasia of the scalp; minor anomalies of the external ears, digits, and nails; and malformations of the breast. We used linkage analysis and exome sequencing of a multiplex family affected by SEN syndrome to identify potassium-channel tetramerization-domain-containing 1 (KCTD1) mutations that cause SEN syndrome. Evaluation of a total of ten families affected by SEN syndrome revealed KCTD1 missense mutations in each family tested. All of the mutations occurred in a KCTD1 region encoding a highly conserved bric-a-brac, tram track, and broad complex (BTB) domain that is required for transcriptional repressor activity. KCTD1 inhibits the transactivation of the transcription factor AP-2α (TFAP2A) via its BTB domain, and mutations in TFAP2A cause cutis aplasia in individuals with branchiooculofacial syndrome (BOFS), suggesting a potential overlap in the pathogenesis of SEN syndrome and BOFS. The identification of KCTD1 mutations in SEN syndrome reveals a role for this BTB-domain-containing transcriptional repressor during ectodermal development.


Subject(s)
Abnormalities, Multiple/etiology , Branchio-Oto-Renal Syndrome/etiology , Ectodermal Dysplasia/etiology , Exome/genetics , Hypospadias/etiology , Muscle Hypotonia/etiology , Mutation, Missense/genetics , Repressor Proteins/genetics , Abnormalities, Multiple/pathology , Amino Acid Sequence , Branchio-Oto-Renal Syndrome/pathology , Co-Repressor Proteins , Ear, External/abnormalities , Ear, External/pathology , Ectodermal Dysplasia/pathology , Female , Humans , Hypospadias/pathology , Male , Molecular Sequence Data , Muscle Hypotonia/pathology , Nipples/abnormalities , Nipples/pathology , Pedigree , Phenotype , Protein Structure, Tertiary , Scalp/abnormalities , Scalp/pathology , Sequence Homology, Amino Acid
6.
J Clin Immunol ; 36(3): 220-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26951490

ABSTRACT

PURPOSE: Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. METHODS: We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. RESULTS: We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. CONCLUSIONS: Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.


Subject(s)
Autoimmune Diseases/genetics , Intellectual Disability/genetics , Lupus Erythematosus, Systemic/genetics , Mutation , Osteochondrodysplasias/genetics , Purpura, Thrombocytopenic, Idiopathic/genetics , Tartrate-Resistant Acid Phosphatase/genetics , Adolescent , Adult , Alleles , Autoantibodies/biosynthesis , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Bone and Bones/immunology , Bone and Bones/pathology , Brain/immunology , Brain/pathology , Child , Child, Preschool , Female , Gene Expression , Genotype , Humans , Intellectual Disability/immunology , Intellectual Disability/pathology , Interferon Type I/genetics , Interferon Type I/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Male , Osteochondrodysplasias/immunology , Osteochondrodysplasias/pathology , Pedigree , Phenotype , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/pathology , Tartrate-Resistant Acid Phosphatase/deficiency , Tartrate-Resistant Acid Phosphatase/immunology
7.
J Hum Genet ; 61(8): 693-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27193221

ABSTRACT

Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.


Subject(s)
Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Genetic Association Studies , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Mutation , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Phenotype , Alleles , Amino Acid Substitution , Exons , Facies , Female , Filamins/genetics , Humans , Male , Pedigree , Sequence Analysis, DNA
8.
Am J Hum Genet ; 90(4): 740-5, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22464250

ABSTRACT

Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368*]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368(∗)] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Dysostoses/genetics , Exome/genetics , Intellectual Disability/genetics , Mutation , Osteochondrodysplasias/genetics , Sequence Analysis, DNA , Adolescent , Adult , Base Sequence , Child , Child, Preschool , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4 , Female , Humans , Male , Molecular Sequence Data , Parathyroid Hormone/metabolism , Signal Transduction/genetics , Thyrotropin/metabolism , Young Adult
9.
Am J Hum Genet ; 90(6): 1094-101, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22608503

ABSTRACT

Cantú syndrome is a rare disorder characterized by congenital hypertrichosis, neonatal macrosomia, a distinct osteochondrodysplasia, and cardiomegaly. Using an exome-sequencing approach applied to one proband-parent trio and three unrelated single cases, we identified heterozygous mutations in ABCC9 in all probands. With the inclusion of the remaining cohort of ten individuals with Cantú syndrome, a total of eleven mutations in ABCC9 were found. The de novo occurrence in all six simplex cases in our cohort substantiates the presence of a dominant disease mechanism. All mutations were missense, and several mutations affect Arg1154. This mutation hot spot lies within the second type 1 transmembrane region of this ATP-binding cassette transporter protein, which may suggest an activating mutation. ABCC9 encodes the sulfonylurea receptor (SUR) that forms ATP-sensitive potassium channels (K(ATP) channels) originally shown in cardiac, skeletal, and smooth muscle. Previously, loss-of-function mutations in this gene have been associated with idiopathic dilated cardiomyopathy type 10 (CMD10). These findings identify the genetic basis of Cantú syndrome and suggest that this is a new member of the potassium channelopathies.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cardiomegaly/genetics , Genetic Diseases, X-Linked/genetics , Hypertrichosis/genetics , Mutation , Osteochondrodysplasias/genetics , Potassium Channels, Inwardly Rectifying/genetics , Receptors, Drug/genetics , Adolescent , Adult , Base Sequence , Child , Cohort Studies , Facies , Female , Genes, Dominant , Humans , Infant , Male , Molecular Sequence Data , Phenotype , Potassium Channels/genetics , Sequence Analysis, DNA , Sulfonylurea Receptors
10.
Am J Hum Genet ; 90(5): 864-70, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22503633

ABSTRACT

Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells.


Subject(s)
Carrier Proteins/genetics , Cerebellar Ataxia/genetics , Mutation , Retinitis Pigmentosa/genetics , Adolescent , Alleles , Carrier Proteins/metabolism , Child , Child, Preschool , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Male , Pedigree , Protein Transport/genetics
11.
Am J Hum Genet ; 90(1): 25-39, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22209248

ABSTRACT

Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that GACI and PXE are in a closely related spectrum of disease. We used a standardized questionnaire to retrospectively evaluate the phenotype of 92 probands with a clinical history of GACI. We obtained the ENPP1 genotype by conventional sequencing. In those patients with less than two disease-causing ENPP1 mutations, we sequenced ABCC6. We observed that three GACI patients who carried biallelic ENPP1 mutations developed typical signs of PXE between 5 and 8 years of age; these signs included angioid streaks and pseudoxanthomatous skin lesions. In 28 patients, no disease-causing ENPP1 mutation was found. In 14 of these patients, we detected pathogenic ABCC6 mutations (biallelic mutations in eight patients, monoallelic mutations in six patients). Thus, ABCC6 mutations account for a significant subset of GACI patients, and ENPP1 mutations can also be associated with PXE lesions in school-aged children. Based on the considerable overlap of genotype and phenotype of GACI and PXE, both entities appear to reflect two ends of a clinical spectrum of ectopic calcification and other organ pathologies, rather than two distinct disorders. ABCC6 and ENPP1 mutations might lead to alterations of the same physiological pathways in tissues beyond the artery.


Subject(s)
Multidrug Resistance-Associated Proteins/genetics , Mutation , Phosphoric Diester Hydrolases/genetics , Pseudoxanthoma Elasticum/genetics , Pyrophosphatases/genetics , Vascular Calcification/genetics , Angioid Streaks/genetics , Base Sequence , Child , Child, Preschool , Female , Humans , Infant , Male , Molecular Sequence Data , Pseudoxanthoma Elasticum/pathology , Retrospective Studies , Surveys and Questionnaires , Vascular Calcification/pathology
12.
Am J Med Genet A ; 167A(1): 111-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25425167

ABSTRACT

Array comparative genomic hybridization (array CGH) has proven its utility in uncovering cryptic rearrangements in patients with X-linked intellectual disability. In 2009, Giorda et al. identified inherited and de novo recurrent Xp11.23p11.22 microduplications in two males and six females from a wide cohort of patients presenting with syndromic intellectual disability. To date, 14 females and 5 males with an overlapping microduplication have been reported in the literature. To further characterize this emerging syndrome, we collected clinical and microarray data from 17 new patients, 10 females, and 7 males. The Xp11.23p11.2 microduplications detected by array CGH ranged in size from 331 Kb to 8.9 Mb. Five patients harbored 4.5 Mb recurrent duplications mediated by non-allelic homologous recombination between segmental duplications and 12 harbored atypical duplications. The chromosomal rearrangement occurred de novo in eight patients and was inherited in six affected males from three families. Patients shared several common major characteristics including moderate to severe intellectual disability, early onset of puberty, language impairment, and age related epileptic syndromes such as West syndrome and focal epilepsy with activation during sleep evolving in some patients to continuous spikes-and-waves during slow sleep. Atypical microduplications allowed us to identify minimal critical regions that might be responsible for specific clinical findings of the syndrome and to suggest possible candidate genes: FTSJ1 and SHROOM4 for intellectual disability along with PQBP1 and SLC35A2 for epilepsy. Xp11.23p11.22 microduplication is a recently-recognized syndrome associated with intellectual disability, epilepsy, and early onset of puberty in females. In this study, we propose several genes that could contribute to the phenotype.


Subject(s)
Chromosomes, Human, X/genetics , Genetic Association Studies , Segmental Duplications, Genomic/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Mapping , Comparative Genomic Hybridization , Electroencephalography , Epilepsy/genetics , Female , Humans , Male , Phenotype
13.
Am J Med Genet A ; 167A(3): 461-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25604898

ABSTRACT

Type 2 collagen disorders encompass a diverse group of skeletal dysplasias that are commonly associated with orthopedic, ocular, and hearing problems. However, the frequency of many clinical features has never been determined. We retrospectively investigated the clinical, radiological, and genotypic data in a group of 93 patients with molecularly confirmed SEDC or a related disorder. The majority of the patients (80/93) had short stature, with radiological features of SEDC (n = 64), others having SEMD (n = 5), Kniest dysplasia (n = 7), spondyloperipheral dysplasia (n = 2), or Torrance-like dysplasia (n = 2). The remaining 13 patients had normal stature with mild SED, Stickler-like syndrome or multiple epiphyseal dysplasia. Over 50% of the patients had undergone orthopedic surgery, usually for scoliosis, femoral osteotomy or hip replacement. Odontoid hypoplasia was present in 56% (95% CI 38-74) and a correlation between odontoid hypoplasia and short stature was observed. Atlanto-axial instability, was observed in 5 of the 18 patients (28%, 95% CI 10-54) in whom flexion-extension films of the cervical spine were available; however, it was rarely accompanied by myelopathy. Myopia was found in 45% (95% CI 35-56), and retinal detachment had occurred in 12% (95% CI 6-21; median age 14 years; youngest age 3.5 years). Thirty-two patients complained of hearing loss (37%, 95% CI 27-48) of whom 17 required hearing aids. The ophthalmological features and possibly also hearing loss are often relatively frequent and severe in patients with splicing mutations. Based on clinical findings, age at onset and genotype-phenotype correlations in this cohort, we propose guidelines for the management and follow-up in this group of disorders.


Subject(s)
Collagen Type II/genetics , Mutation , Osteochondrodysplasias/congenital , Phenotype , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Radiography , Young Adult
14.
Pediatr Radiol ; 45(7): 965-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25646736

ABSTRACT

Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis.


Subject(s)
Cholesterol/biosynthesis , Lipid Metabolism, Inborn Errors/complications , Musculoskeletal Abnormalities/complications , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal System/diagnostic imaging , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Pregnancy , Prenatal Diagnosis , Radiography , Young Adult
15.
Hum Genet ; 133(3): 367-77, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24178751

ABSTRACT

Oral-facial-digital syndrome type VI (OFD VI) is a recessive ciliopathy defined by two diagnostic criteria: molar tooth sign (MTS) and one or more of the following: (1) tongue hamartoma (s) and/or additional frenula and/or upper lip notch; (2) mesoaxial polydactyly of one or more hands or feet; (3) hypothalamic hamartoma. Because of the MTS, OFD VI belongs to the "Joubert syndrome related disorders". Its genetic aetiology remains largely unknown although mutations in the TMEM216 gene, responsible for Joubert (JBS2) and Meckel-Gruber (MKS2) syndromes, have been reported in two OFD VI patients. To explore the molecular cause(s) of OFD VI syndrome, we used an exome sequencing strategy in six unrelated families followed by Sanger sequencing. We identified a total of 14 novel mutations in the C5orf42 gene in 9/11 families with positive OFD VI diagnostic criteria including a severe fetal case with microphthalmia, cerebellar hypoplasia, corpus callosum agenesis, polydactyly and skeletal dysplasia. C5orf42 mutations have already been reported in Joubert syndrome confirming that OFD VI and JBS are allelic disorders, thus enhancing our knowledge of the complex, highly heterogeneous nature of ciliopathies.


Subject(s)
Membrane Proteins/genetics , Orofaciodigital Syndromes/diagnosis , Orofaciodigital Syndromes/genetics , Abnormalities, Multiple , Adolescent , Adult , Alleles , Cerebellar Diseases/diagnosis , Cerebellar Diseases/genetics , Cerebellum/abnormalities , Child , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Exome , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Female , Hamartoma/diagnosis , Hamartoma/genetics , Humans , Hypothalamic Diseases/diagnosis , Hypothalamic Diseases/genetics , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Male , Mutation , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Phenotype , Polydactyly/diagnosis , Polydactyly/genetics , Retina/abnormalities , Sequence Analysis, DNA , Young Adult
16.
Am J Hum Genet ; 89(1): 7-14, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21683322

ABSTRACT

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFß-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFß signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFß signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Subject(s)
Bone Diseases, Developmental/genetics , Dwarfism/genetics , Eye Abnormalities/genetics , Limb Deformities, Congenital/genetics , Microfilament Proteins/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , Connective Tissue/abnormalities , DNA Mutational Analysis , Exons , Extracellular Matrix Proteins/metabolism , Fibrillin-1 , Fibrillins , Fluorescent Antibody Technique , Heterozygote , Humans , Inclusion Bodies/genetics , Marfan Syndrome/genetics , Microfibrils/ultrastructure , Microfilament Proteins/metabolism , Middle Aged , Phenotype , Protein Structure, Tertiary , Signal Transduction , Transforming Growth Factor beta1/metabolism , Young Adult
17.
Am J Med Genet A ; 164A(3): 769-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24357493

ABSTRACT

Dysspondyloenchondromatosis is a rare form of generalized enchondromatosis associated with spinal involvement. This skeletal dysplasia is characterized by multiple enchondromas present in vertebrae as well as in metaphyseal and diaphyseal parts of the long tubular bones, post-natal short stature, and early development of kyphoscoliosis. A novel heterozygous missense mutation in COL2A1 was recently identified in a patient with dysspondyloenchondromatosis. This suggests that dysspondyloenchondromatosis might expand the already broad spectrum of type II collagenopathies. Here, we report on a young girl with features of dysspondyloenchondromatosis, specifically short stature, thoracoscoliosis, and generalized enchondromas lesions. Sanger sequencing failed to detect a mutation in COL2A1. We therefore suggest that dysspondyloenchondromatosis is a genetically heterogeneous condition.


Subject(s)
Enchondromatosis/diagnosis , Enchondromatosis/genetics , Genetic Heterogeneity , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Child, Preschool , Collagen Type II/genetics , Facies , Female , Humans , Mutation , Phenotype , Radiography , Spine/pathology
18.
J Med Genet ; 50(2): 91-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23339108

ABSTRACT

BACKGROUND: Asphyxiating Thoracic Dysplasia (ATD) belongs to the short rib polydactyly group and is characterized by a narrow thorax, short long bones and trident acetabular roof. Other reported features include polydactyly, renal, liver and retinal involvement. To date, mutations in IFT80, DYNC2H1, TTC21B and WDR19 have been reported in ATD. The clinical and molecular heterogeneity leads to difficulties in the evaluation of the long-term prognosis. METHODS: We investigated 53 ATD cases (23 living cases and 30 fetuses) from 39 families. They benefited from a combined approach of deep phenotyping and IFT80 and DYNC2H1 molecular screening. RESULTS: Among the 23 postnatal cases, pulmonary insufficiency was noted in 60% of cases, with tracheotomy requirement in five cases. Renal and liver diseases occurred respectively in 17% and 22% of cases, whereas retinal alteration was present in 50% of cases aged more than 5 years. We identified DYNC2H1 mutations in 23 families (59%) and IFT80 mutations in two families (5%). However, in six families, only one heterozygote mutation in either IFT80 or DYNC2H1 was identified. Finally, the two genes were excluded in 14 families (36%). CONCLUSIONS: We conclude that DYNC2H1 is a major gene responsible for ATD, while IFT80 is rarely involved. The presence of only one mutation in six families and the exclusion of the two genes in 14 families support the involvement of other causal cilia genes. The long-term follow up emphasizes that the pulmonary prognosis is probably less pejorative and retinal involvement more frequent than previously thought.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Abortion, Induced , Adolescent , Adult , Child , Child, Preschool , Cytoplasmic Dyneins/genetics , Ellis-Van Creveld Syndrome/diagnosis , Ellis-Van Creveld Syndrome/diagnostic imaging , Ellis-Van Creveld Syndrome/pathology , Female , Fetus/abnormalities , France , Genotype , Humans , Infant , Male , Middle Aged , Mutation , Phenotype , Ultrasonography, Prenatal
19.
Nat Genet ; 37(9): 1003-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16086014

ABSTRACT

Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.


Subject(s)
Chromosomes, Human, Pair 11/genetics , DNA Methylation , Genomic Imprinting/genetics , Growth Disorders/genetics , Mutation/genetics , Telomere , CCCTC-Binding Factor , DNA-Binding Proteins/genetics , Fetal Growth Retardation , Growth Disorders/physiopathology , Humans , Insulin-Like Growth Factor II , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Proteins/genetics , RNA, Long Noncoding , RNA, Untranslated/genetics , Repressor Proteins/genetics , Syndrome
20.
Nat Genet ; 37(10): 1119-24, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16142236

ABSTRACT

Intrauterine growth retardation is caused by maternal, fetal or placental factors that result in impaired endovascular trophoblast invasion and reduced placental perfusion. Although various causes of intrauterine growth retardation have been identified, most cases remain unexplained. Studying 29 families with 3-M syndrome (OMIM 273750), an autosomal recessive condition characterized by severe pre- and postnatal growth retardation, we first mapped the underlying gene to chromosome 6p21.1 and then identified 25 distinct mutations in the gene cullin 7 (CUL7). CUL7 assembles an E3 ubiquitin ligase complex containing Skp1, Fbx29 (also called Fbw8) and ROC1 and promotes ubiquitination. Using deletion analysis, we found that CUL7 uses its central region to interact with the Skp1-Fbx29 heterodimer. Functional studies indicated that the 3-M-associated CUL7 nonsense and missense mutations R1445X and H1464P, respectively, render CUL7 deficient in recruiting ROC1. These results suggest that impaired ubiquitination may have a role in the pathogenesis of intrauterine growth retardation in humans.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Cullin Proteins/genetics , Fetal Growth Retardation/genetics , Carrier Proteins/metabolism , Child , Chromosome Mapping , Codon, Nonsense , DNA Mutational Analysis , Female , Homozygote , Humans , Male , Mutation, Missense , Protein Interaction Mapping , Protein Structure, Tertiary , S-Phase Kinase-Associated Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Sequence Deletion , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL