Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nano Lett ; 22(17): 6964-6971, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36006796

ABSTRACT

Strain in two-dimensional (2D) materials has attracted particular attention because of the remarkable modification of electronic and optical properties. However, emergent electromechanical phenomena and hidden mechanisms, such as strain-superlattice-induced topological states or flexoelectricity under strain gradient, remain under debate. Here, using scanning photocurrent microscopy, we observe significant photocurrent enhancement in hybrid vertical junction devices made of strained few-layer graphene and InGaN quantum dots. Optoelectronic response and photoluminescence measurements demonstrate a possible mechanism closely tied to the flexoelectric effect in few-layer graphene, where the strain can induce a lateral built-in electric field and assist the separation of electron-hole pairs. Photocurrent mapping reveals an unprecedentedly ordered hexagonal network, suggesting the potential to create a superlattice by strain engineering. Our work provides insights into optoelectronic phenomena in the presence of strain and paves the way for practical applications associated with strained 2D materials.

2.
Nano Lett ; 21(14): 6314-6320, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34250802

ABSTRACT

Monolayer transition metal dichalcogenides (ML-TMDCs) are a versatile platform to explore the transport dynamics of the tightly bound excitonic states. The diffusion of neutral excitons in various ML-TMDCs has been observed. However, the transport of charged excitons (trions), which can be driven by an in-plane electric field and facilitate the formation of an excitonic current, has yet been well investigated. Here, we report the direct observation of diffusion and drift of the trions in ML-WS2 through spatially and time-resolved photoluminescence. An effective diffusion coefficient of 0.47 cm2/s was extracted from the broadening of spatial profiles of the trion emission. When an in-plane electric field is applied, the spatial shift of the trion emission profiles indicated a drift velocity of 7400 cm/s. Both the diffusion caused broadening and the drift caused shift of the emission profiles saturate because of the Coulomb interactions between trions and the background charges.


Subject(s)
Electricity , Molybdenum , Diffusion
3.
Sensors (Basel) ; 20(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679816

ABSTRACT

Seed crystals are the prerequisite for the growth of high quality and large size aluminum nitride (AlN) single crystal boules. The physical vapor transport (PVT) method is adopted to grow AlN seed crystal. However, this method is not available in nature. Herein, the temperature field distribution in the PVT furnace was simulated using the numerical analysis method to obtain free-standing and large-size seeds. The theoretical studies indicate that the temperature distribution in the crucible is related to the crucible height. According to the theory of growth dynamics and growth surface dynamics, the optimal thermal distribution was achieved through the design of a specific crucible structure, which is determined by the ratio of top-heater power to main-heater power. Moreover, in our experiment, a sole AlN single crystal seed with a length of 12 mm was obtained on the tungsten (W) substrate. The low axial temperature gradient between material source and substrate can decrease the nucleation rate and growth rate, and the high radial temperature gradient of the substrate can promote the expansion of crystal size. Additionally, the crystallinity of the crystals grown under different thermal field conditions are analyzed and compared. The Raman results manifest the superiority of the thermal inversion method in the growth of high quality AlN single crystal.

4.
Nanotechnology ; 30(30): 305701, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-30974421

ABSTRACT

Metamorphic InAs/In0.15Ga0.85As and InAs/In0.31Ga0.69As quantum dot (QD) arrays are known to be photosensitive in the telecommunication ranges at 1.3 and 1.55 µm, respectively; however, for photonic applications of these nanostructures, the effect of levels related to defects still needs in-depth investigation. We have focused on the influence of electron traps of defects on photocurrent (PC) in the plane of the QD array, studying by PC and deep level thermally stimulated current spectroscopy together with HRTEM and theoretical modeling. In the structures, a rich spectrum of electron trap levels of point defects EL6 (E c - 0.37 eV), EL7 (0.29-0.30 eV), EL8 (0.27 eV), EL9/M2 (0.22-0.23 eV), EL10/M1 (0.16 eV), M0 (∼0.11 eV) and three extended defects ED1/EL3 (0.52-0.54), ED2/EL4 (0.47-0.48 eV), ED3/EL5 (0.42-0.43 eV) has been identified. Among them, new defect levels undiscovered earlier in InAs/InGaAs nanostructures has been detected, in particular, EL8 and M0. The found electron traps are shown to affect a time-dependent PC at low temperatures. Besides a long-term kinetics due to trap charging, a prolonged PC decrement versus time is measured under constant illumination. The decrement is interpreted to be related to a Coulomb screening of the conductivity channel by the electrons captured in the QD interface traps. The decrement is well fitted by allometric exponents, which means many types of traps involved in electron capturing. This study provides new findings into the mechanism of in-plane PC of QD arrays, showing a crucial importance of growth-related defects on photoresponsivity at low temperatures.

5.
Nano Lett ; 18(9): 5640-5645, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30139259

ABSTRACT

van der Waals heterostructures that are usually formed using atomically thin transition-metal dichalcogenides (TMDCs) with a direct band gap in the near-infrared to the visible range are promising candidates for low-dimension optoelectronic applications. The interlayer interaction or coupling between two-dimensional (2D) layer and the substrate or between adjacent 2D layers plays an important role in modifying the properties of the individual 2D material or device performances through Coulomb interaction or forming interlayer excitons. Here, we report the realization of quasi-zero-dimensional (0D) photon emission of WS2 in a coupled hybrid structure of monolayer WS2 and InGaN quantum dots (QDs). An interfacially bound exciton, i.e., the coupling between the excitons in WS2 and the electrons in QDs, has been identified. The emission of this interfacially bound exciton inherits the 0D confinement of QDs as well as the spin-valley physics of excitons in monolayer WS2. The effective coupling between 2D materials and conventional semiconductors observed in this work provides an effective way to realize the 0D emission of 2D materials and opens the potential of compact on-chip integration of valleytronics and conventional electronics and optoelectronics.

6.
Molecules ; 24(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010239

ABSTRACT

In this report, the development of physical vapor transport (PVT) methods for bulk aluminum nitride (AlN) crystal growth is reviewed. Three modified PVT methods with different features including selected growth at a conical zone, freestanding growth on a perforated sheet, and nucleation control with an inverse temperature gradient are discussed and compared in terms of the size and quality of the bulk AlN crystals they can produce as well as the process complexity. The PVT method with an inverse temperature gradient is able to significantly reduce the nucleation rate and realize the dominant growth of only one bulk AlN single crystal, and thus grow centimeter-sized bulk AlN single crystals. X-ray rocking curve (XRC) and Raman spectroscopy measurements showed a high crystalline quality of the prepared AlN crystals. The inverse temperature gradient provides an efficient and relatively low-cost method for the preparation of large-sized and high-quality AlN seed crystals used for seeded growth, devoted to the diameter enlargement and quality improvement of bulk AlN single crystals.


Subject(s)
Crystallization/methods , Gases/chemistry , Aluminum Compounds/chemistry , Particle Size , Spectrum Analysis, Raman , Temperature
7.
ACS Omega ; 6(43): 29137-29148, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746602

ABSTRACT

Semiconductor Cu2ZnSn(S x Se1-x )4 (CZTSSe) solid solution is considered as a perspective absorber material for solar cells. However, during its synthesis or deposition, any modification in the resulting optical properties is hardly predicted. In this study, experimental and theoretical analyses of CZTSSe bulk crystals and thin films are presented based on Raman scattering and absorption spectroscopies together with compositional and morphological characterizations. CZTSSe bulk and thin films are studied upon a change in the x = S/(S + Se) aspect ratio. The morphological study is focused on surface visualization of the solid solutions, depending on x variation. It has been discovered for the first time that the surface of the bulk CZTSSe crystal with x = 0.35 has pyramid-like structures. The information obtained from the elemental analysis helps to consider the formation of a set of possible intrinsic lattice defects, including vacancies, self-interstitials, antisites, and defect complexes. Due to these results and the experimentally obtained values of the band gap within 1.0-1.37 eV, a deviation from the calculated band gap values is estimated in the range of 1.0-1.5 eV. It is suggested which defects can have an influence on such a band gap change. Also, on comparing the experimental Raman spectra of CZTSSe with the theoretical modeling results, an excellent agreement is obtained for the main Raman bands. The proposed theoretical approach allows to estimate the values of concentration of atoms (S or Se) for CZTSSe solid solution directly from the experimental Raman spectra. Thus, the visualization of morphology and the proposed theoretical approach at various x values will help for a deeper understanding of the CZTSSe structure to develop next-generation solar cells.

8.
Materials (Basel) ; 13(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516987

ABSTRACT

The application of conventional power metal-oxide-semiconductor field-effect transistor (MOSFET) is limited by the famous one-dimensional "silicon limit" (1D-limit) in the trade-off relationship between specific on-resistance (RSP) and breakdown voltage (BV). In this paper, a new power MOSFET architecture is proposed to achieve a beyond-1D-limit RSP-BV trade-off. Numerical TCAD (technology computer-aided design) simulations were carried out to comparatively study the proposed MOSFET, the conventional power MOSFET, and the superjunction MOSFET. All the devices were designed with the same breakdown voltage of ~550 V. The proposed MOSFET features a deep trench between neighboring p-bodies and multiple p-islands located at the sidewall and bottom of the trench. The proposed MOSFET allows a high doping concentration in the drift region, which significantly reduces its RSP compared to the conventional power MOSFET. The multiple p-islands split the electric field into multiple peaks and help the proposed MOSFET maintain a similar breakdown voltage to the conventional power MOSFET with the same drift region thickness. Another famous device technology, the superjunction MOSFET (SJ-MOSFET), also breaks the 1D-limit. However, the SJ-MOSFET suffers a snappy reverse recovery performance, which is a notorious drawback of SJ-MOSFET and limits the range of its application. On the contrary, the proposed MOSFET presents a superior reverse recovery performance and can be used in various power switching applications where hard commutation is required.

9.
Nanoscale ; 12(38): 20025-20032, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32996977

ABSTRACT

Harvesting solar energy for artificial photosynthesis is an emerging field in alternative energy research. In this work, the photocatalytic properties of InX(X = S, Se)/transition metal disulfide (MoS2 and WS2) van der Waals heterostructures have been investigated. The calculation results indicate that these heterostructures exhibit improved photocatalytic performance over that of isolated InX or transition metal disulfide monolayers. The studied heterostructures all have type-II band alignment with holes and electrons located at the TMD and InX side, respectively. This facilitates the spatial separation of photogenerated carriers and improves the photocatalytic efficiency. The carrier mobility of the designed heterostructures can be boosted compared with the isolated monolayers, thus enhancing the carrier transport properties. Moreover, the strain-tuned heterostructures can prominently manipulate the light-harvesting capability especially from the visible light to infrared light range. Among the studied heterostructures, InSe/MoS2 with the suitable band edge positions, excellent transport properties and strain tolerance, and the lowest overpotential for oxygen evolution, stands out as the most promising candidate for photocatalytic applications. This work opens an avenue for the design of highly efficient heterostructure photocatalysts for solar-to-energy applications.

10.
Nanoscale ; 11(28): 13552-13557, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31290511

ABSTRACT

Monolayer transition metal dichalcogenides (TMDCs) are an ideal platform for multi-carrier bound states, the excitons and trions of which have been well identified and investigated. However, the formation and identification of biexcitons with certain configurations are more complicated. Here, we report a strategy to generate the hole-trion bound state, i.e. excited-state biexcitons, in a graphene/WS2 van der Waals heterostructure, the formation of which is attributed to the charge transfer and exciton dissociation at the hetero-interface. The biexciton nature is confirmed by excitation-power dependent, helicity-resolved, and time-resolved photoluminescence measurements. This hole-trion bound state features a thermal activation energy of ∼32 meV, rendering a stable excited-state biexciton emission up to 330 K. Moreover, the emission behavior of the excited-state biexcitons can be tuned by modifying the charge transfer process at the hetero-interface via electrostatic gating. Our results will benefit to further understanding the complex multi-carrier interactions in 2D semiconductors and related heterostructures.

11.
ACS Appl Mater Interfaces ; 10(20): 17419-17426, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29706066

ABSTRACT

Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N2 plasma treatment to GaN sample surface prior to stacking monolayer MoS2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS2/GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS2/GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.

12.
Sci Rep ; 6: 27676, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279454

ABSTRACT

Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.

13.
ACS Nano ; 8(9): 9616-21, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25184364

ABSTRACT

Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi2Te3 thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak antilocalization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.

SELECTION OF CITATIONS
SEARCH DETAIL