Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Physiol ; 602(11): 2601-2614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38194279

ABSTRACT

Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.


Subject(s)
Genetic Variation , Genome , Animals , Humans , Biological Evolution , Environment , Selection, Genetic , Mutation
2.
PLoS Pathog ; 9(3): e1003239, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23555252

ABSTRACT

Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF) virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF) infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF) extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5(P189S) mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.


Subject(s)
Actin Cytoskeleton/metabolism , Vaccinia virus/physiology , Vaccinia/transmission , Viral Envelope Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Release/physiology , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Membrane/ultrastructure , Cell Membrane/virology , Chlorocebus aethiops , Comet Assay , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Fibroblasts/virology , Host-Pathogen Interactions , Mice , Microscopy, Electron, Transmission , NIH 3T3 Cells , Oncogene Proteins/deficiency , Oncogene Proteins/genetics , Vaccinia virus/ultrastructure , Vero Cells , Viral Envelope Proteins/ultrastructure , Viral Structural Proteins/ultrastructure
3.
J Virol ; 86(13): 7427-43, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22532690

ABSTRACT

Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.


Subject(s)
Cytoskeletal Proteins/metabolism , Ectromelia virus/pathogenicity , Ectromelia, Infectious/virology , Host-Pathogen Interactions , Viral Proteins/metabolism , Virus Release , Animals , Ectromelia virus/genetics , Female , Gene Deletion , Liver/virology , Lymph Nodes/virology , Mice , Mice, Inbred BALB C , Protein Transport , Spleen/virology , Viral Load , Viral Plaque Assay , Viral Proteins/genetics , Virulence
4.
Viruses ; 10(8)2018 07 24.
Article in English | MEDLINE | ID: mdl-30042325

ABSTRACT

The microtubule cytoskeleton is a primary organizer of viral infections for delivering virus particles to their sites of replication, establishing and maintaining subcellular compartments where distinct steps of viral morphogenesis take place, and ultimately dispersing viral progeny. One of the best characterized examples of virus motility is the anterograde transport of the wrapped virus form of vaccinia virus (VACV) from the trans-Golgi network (TGN) to the cell periphery by kinesin-1. Yet many aspects of this transport event are elusive due to the speed of motility and the challenges of imaging this stage at high resolution over extended time periods. We have established a novel imaging technology to track virus transport that uses photoconvertible fluorescent recombinant viruses to track subsets of virus particles from their site of origin and determine their destination. Here we image virus exit from the TGN and their rate of egress to the cell periphery. We demonstrate a role for kinesin-1 engagement in regulating virus exit from the TGN by removing A36 and F12 function, critical viral mediators of kinesin-1 recruitment to virus particles. Phototracking viral particles and components during infection is a powerful new imaging approach to elucidate mechanisms of virus replication.


Subject(s)
Cytoplasm/metabolism , Vaccinia virus/physiology , Virion/physiology , Virus Release , trans-Golgi Network/physiology , Biological Transport , Cytoplasm/virology , HeLa Cells , Humans , Kinesins/metabolism , Optical Imaging , Vaccinia virus/genetics , Viral Proteins/genetics , Viral Structural Proteins/genetics , Virus Replication , trans-Golgi Network/virology
5.
Cytoskeleton (Hoboken) ; 74(4): 170-183, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28218453

ABSTRACT

Actin is a major component of the cytoskeleton and is present as two isoforms in non-muscle cells: ß- and γ-cytoplasmic actin. These isoforms are strikingly conserved, differing by only four N-terminal amino acids. During spread from infected cells, vaccinia virus (VACV) particles induce localized actin nucleation that propel virus to surrounding cells and facilitate cell-to-cell spread of infection. Here we show that virus-tipped actin comets are composed of ß- and γ-actin. We employed isoform-specific siRNA knockdown to examine the role of the two isoforms in VACV-induced actin comets. Despite the high level of similarity between the actin isoforms, and their colocalization, VACV-induced actin nucleation was dependent exclusively on ß-actin. Knockdown of ß-actin led to a reduction in the release of virus from infected cells, a phenotype dependent on virus-induced Arp2/3 complex activity. We suggest that local concentrations of actin isoforms may regulate the activity of cellular actin nucleator complexes.


Subject(s)
Actins/metabolism , Protein Isoforms/metabolism , Vaccinia virus/growth & development , Humans , Vaccinia virus/pathogenicity
8.
J Vis Exp ; (83): e51151, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24473272

ABSTRACT

Tagging of viral proteins with fluorescent proteins has proven an indispensable approach to furthering our understanding of virus-host interactions. Vaccinia virus (VACV), the live vaccine used in the eradication of smallpox, is particularly amenable to fluorescent live-cell microscopy owing to its large virion size and the ease with which it can be engineered at the genome level. We report here an optimized protocol for generating recombinant viruses. The minimal requirements for targeted homologous recombination during vaccinia replication were determined, which allows the simplification of construct generation. This enabled the alliance of transient dominant selection (TDS) with a fluorescent reporter and metabolic selection to provide a rapid and modular approach to fluorescently label viral proteins. By streamlining the generation of fluorescent recombinant viruses, we are able to facilitate downstream applications such as advanced imaging analysis of many aspects of the virus-host interplay that occurs during virus replication.


Subject(s)
Green Fluorescent Proteins/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Vaccinia virus/genetics , Vaccinia virus/metabolism , Viral Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Recombinant Fusion Proteins/genetics , Viral Proteins/genetics
9.
Ann N Y Acad Sci ; 1305: 18-28, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24033385

ABSTRACT

Natural selection provides feedback through which information about the environment and its recurring challenges is captured, inherited, and accumulated within genomes in the form of variations that contribute to survival. The variation upon which natural selection acts is generally described as "random." Yet evidence has been mounting for decades, from such phenomena as mutation hotspots, horizontal gene transfer, and highly mutable repetitive sequences, that variation is far from the simplifying idealization of random processes as white (uniform in space and time and independent of the environment or context).  This paper focuses on what is known about the generation and control of mutational variation, emphasizing that it is not uniform across the genome or in time, not unstructured with respect to survival, and is neither memoryless nor independent of the (also far from white) environment. We suggest that, as opposed to frequentist methods, Bayesian analysis could capture the evolution of nonuniform probabilities of distinct classes of mutation, and argue not only that the locations, styles, and timing of real mutations are not correctly modeled as generated by a white noise random process, but that such a process would be inconsistent with evolutionary theory.


Subject(s)
Biological Evolution , Mutation , Selection, Genetic , Animals , Gene-Environment Interaction , Genetic Fitness , Genetic Variation , Humans
10.
Ann N Y Acad Sci ; 1267: 1-10, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22954209

ABSTRACT

This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics.


Subject(s)
Chromosome Structures , Evolution, Molecular , Genes , Genetic Variation , Animals , Base Sequence , DNA Replication , Genome , Humans , Mutagenesis , Neoplasms/genetics , Sequence Analysis, DNA
11.
Annu Rev Microbiol ; 57: 467-85, 2003.
Article in English | MEDLINE | ID: mdl-14527288

ABSTRACT

Most descriptions of evolution assume that all mutations are completely random with respect to their potential effects on survival. However, much like other phenotypic variations that affect the survival of the descendants, intrinsic variations in the probability, type, and location of genetic change can feel the pressure of natural selection. From site-specific recombination to changes in polymerase fidelity and repair of DNA damage, an organism's gene products affect what genetic changes occur in its genome. Through the action of natural selection on these gene products, potentially favorable mutations can become more probable than random. With examples from variation in bacterial surface proteins to the vertebrate immune response, it is clear that a great deal of genetic change is better than "random" with respect to its potential effect on survival. Indeed, some potentially useful mutations are so probable that they can be viewed as being encoded implicitly in the genome. An updated evolutionary theory includes emergence, under selective pressure, of genomic information that affects the probability of different classes of mutation, with consequences for genome survival.


Subject(s)
Bacteria/genetics , Evolution, Molecular , Genetic Variation/genetics , Genome, Bacterial , Selection, Genetic , Gene Transfer, Horizontal/genetics , Genetic Code/genetics , Mutation , Phenotype
13.
Washington, D.C; Pan Américan Health Organization; 1996. s.p (PAHO. Scientific Públication, 560).
Monography in English | LILACS | ID: lil-377004
SELECTION OF CITATIONS
SEARCH DETAIL