Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell ; 157(2): 382-394, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24725405

ABSTRACT

Missense mutations in the p53 tumor suppressor inactivate its antiproliferative properties but can also promote metastasis through a gain-of-function activity. We show that sustained expression of mutant p53 is required to maintain the prometastatic phenotype of a murine model of pancreatic cancer, a highly metastatic disease that frequently displays p53 mutations. Transcriptional profiling and functional screening identified the platelet-derived growth factor receptor b (PDGFRb) as both necessary and sufficient to mediate these effects. Mutant p53 induced PDGFRb through a cell-autonomous mechanism involving inhibition of a p73/NF-Y complex that represses PDGFRb expression in p53-deficient, noninvasive cells. Blocking PDGFRb signaling by RNA interference or by small molecule inhibitors prevented pancreatic cancer cell invasion in vitro and metastasis formation in vivo. Finally, high PDGFRb expression correlates with poor disease-free survival in pancreatic, colon, and ovarian cancer patients, implicating PDGFRb as a prognostic marker and possible target for attenuating metastasis in p53 mutant tumors.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Neoplasm Metastasis , Pancreatic Neoplasms/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
2.
Cell ; 144(4): 465-6, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21335229

ABSTRACT

Tumor cells frequently display an abnormal number of chromosomes, a phenomenon known as aneuploidy. Tang et al. (2011) now show that aneuploid cells are particularly sensitive to compounds that induce proteotoxic and energy stress. Could this vulnerability lead to new cancer therapies?

3.
Biochemistry ; 62(7): 1321-1329, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36883372

ABSTRACT

The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.


Subject(s)
E1A-Associated p300 Protein , Peptides , Proto-Oncogene Proteins c-myb , Peptides/pharmacology , Protein Binding , Proto-Oncogene Proteins c-myb/antagonists & inhibitors , Proto-Oncogene Proteins c-myb/chemistry , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/chemistry
4.
Chemistry ; 28(8): e202103888, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34878202

ABSTRACT

Access to the cyclic depsipeptide FR900359 (FR), a selective Gq/11 protein inhibitor of high pharmacological interest and a potential lead molecule for targeted therapy of cancers with oncogenic GNAQ or GNA11 mutations (encoding Gq and G11 respectively), has been challenging ever since its initial discovery more than three decades ago. The recent discovery of Chromobacterium vaccinii as a cultivable FR producer enables the development of approaches leading to a high-yielding, scalable and sustainable biotechnological process for production of FR, thereby removing this bottleneck. Here we characterize different promoters in exchange of the native promoter of the FR assembly line, resulting in an overexpression mutant with significantly increased production of FR. Thereby, the isolation and structure elucidation of novel FR analogs of low abundance is enabled. Further, we explore the antiproliferative activities of fifteen chromodepsins against uveal melanoma cell lines harboring Gq/11 mutations and characterize the major metabolite of FR formed in plasma.


Subject(s)
Chromobacterium , Depsipeptides , Cell Line, Tumor , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , Humans , Mutation , Promoter Regions, Genetic , Uveal Neoplasms
5.
Nature ; 534(7609): 647-51, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27338794

ABSTRACT

Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proved difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, a MEK inhibitor approved by the US Food and Drug Administration, which acts downstream of KRAS to suppress signalling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signalling rebound and adaptive drug resistance. As a consequence, genetic or pharmacological inhibition of FGFR1 in combination with trametinib enhances tumour cell death in vitro and in vivo. This compensatory response shows distinct specificities: it is dominated by FGFR1 in KRAS-mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patients' tumours treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Imidazoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyridazines/therapeutic use , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Cell Death/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Models, Animal , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Feedback, Physiological , Female , Humans , Imidazoles/pharmacology , Lung Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Mice , Mutant Proteins/genetics , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Pyridazines/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Xenograft Model Antitumor Assays
6.
Nature ; 516(7531): 423-7, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25337876

ABSTRACT

Chromosomal rearrangements have a central role in the pathogenesis of human cancers and often result in the expression of therapeutically actionable gene fusions. A recently discovered example is a fusion between the genes echinoderm microtubule-associated protein like 4 (EML4) and anaplastic lymphoma kinase (ALK), generated by an inversion on the short arm of chromosome 2: inv(2)(p21p23). The EML4-ALK oncogene is detected in a subset of human non-small cell lung cancers (NSCLC) and is clinically relevant because it confers sensitivity to ALK inhibitors. Despite their importance, modelling such genetic events in mice has proven challenging and requires complex manipulation of the germ line. Here we describe an efficient method to induce specific chromosomal rearrangements in vivo using viral-mediated delivery of the CRISPR/Cas9 system to somatic cells of adult animals. We apply it to generate a mouse model of Eml4-Alk-driven lung cancer. The resulting tumours invariably harbour the Eml4-Alk inversion, express the Eml4-Alk fusion gene, display histopathological and molecular features typical of ALK(+) human NSCLCs, and respond to treatment with ALK inhibitors. The general strategy described here substantially expands our ability to model human cancers in mice and potentially in other organisms.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Genetic Engineering/methods , Translocation, Genetic/genetics , Anaplastic Lymphoma Kinase , Animals , Antineoplastic Agents/therapeutic use , Cells, Cultured , Chromosome Inversion/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Crizotinib , Disease Models, Animal , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , NIH 3T3 Cells , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism
7.
J Biol Chem ; 292(10): 4164-4175, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28154181

ABSTRACT

KRAS is the most frequently mutated oncogene in human cancer, but its therapeutic targeting remains challenging. Here, we report a synthetic lethal screen with a library of deubiquitinases and identify USP39, which encodes an essential splicing factor, as a critical gene for the viability of KRAS-dependent cells. We show that splicing fidelity inhibitors decrease preferentially the proliferation rate of KRAS-active cells. Moreover, depletion of DHX38, encoding an USP39-interacting splicing factor, also reduces the viability of these cells. In agreement with these results, USP39 depletion caused a significant reduction in pre-mRNA splicing efficiency, as demonstrated through RNA-seq experiments. Furthermore, we show that USP39 is up-regulated in lung and colon carcinomas and its expression correlates with KRAS levels and poor clinical outcome. Accordingly, our work provides critical information for the development of splicing-directed antitumor treatments and supports the potential of USP39-targeting strategies as the basis of new anticancer therapies.


Subject(s)
Colonic Neoplasms/pathology , Lung Neoplasms/pathology , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Ubiquitin-Specific Proteases/metabolism , Animals , Apoptosis , Blotting, Western , Cell Proliferation , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Nude , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Tumor Cells, Cultured , Ubiquitin-Specific Proteases/genetics , Xenograft Model Antitumor Assays
9.
Cancer Discov ; 14(2): 308-325, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37931288

ABSTRACT

Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but the clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples, we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intratumoral heterogeneity and suggest that targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. SIGNIFICANCE: Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy. This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Differentiation , Alveolar Epithelial Cells/pathology
10.
Nat Cancer ; 5(3): 481-499, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233483

ABSTRACT

Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis. Finally, we show that GNAQ/11-mutant UM cells and patients' tumors exhibit elevated levels of IP4, a biomarker of enhanced IP3 production; these high levels are abolished by GNAQ/11 inhibition and correlate with sensitivity to INPP5A depletion. Our findings uncover INPP5A as a synthetic lethal vulnerability and a potential therapeutic target for GNAQ/11-mutant-driven cancers.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/therapeutic use , Mutation , Signal Transduction , Inositol Polyphosphate 5-Phosphatases/genetics
11.
Semin Cell Dev Biol ; 22(6): 572-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21439391

ABSTRACT

The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase whose activation requires the binding of a cofactor, either Cdc20 or Cdh1. While APC/C-Cdc20 is a major player during mitotic exit, APC/C-Cdh1 plays a central role in maintaining quiescence and controlling the onset of DNA replication. In addition, APC/C-Cdh1 is essential for endoreduplication, a process in which several rounds of DNA synthesis occur without mitosis. Recent data suggest that the APC/C is also involved in differentiation and metabolism, and plays important roles in postmitotic cells such as neurons. Thus, the APC/C is not only critical for anaphase onset but also regulates many other cellular processes during G1/S or in quiescent cells.


Subject(s)
Anaphase , Cadherins/metabolism , Cell Cycle Proteins/metabolism , Neurons/physiology , Spindle Apparatus/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin-Protein Ligases/metabolism , Anaphase-Promoting Complex-Cyclosome , Animals , Antigens, CD , Cadherins/genetics , Cdc20 Proteins , Cell Cycle Proteins/genetics , Cell Differentiation , DNA Replication , Gene Expression Regulation, Developmental , Genomic Instability , Humans , Mice , Protein Binding , Spindle Apparatus/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligases/genetics
12.
bioRxiv ; 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37808711

ABSTRACT

Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intra-tumoral heterogeneity and suggest targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. Significance: Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy.

13.
JTO Clin Res Rep ; 3(1): 100256, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34984405

ABSTRACT

INTRODUCTION: Somatic KRAS mutations occur in 25% of patients with NSCLC. Treatment with MEK inhibitor monotherapy has not been successful in clinical trials to date. Compensatory activation of FGFR1 was identified as a mechanism of trametinib resistance in KRAS-mutant NSCLC, and combination therapy with trametinib and ponatinib was synergistic in in vitro and in vivo models. This study sought to evaluate this drug combination in patients with KRAS-mutant NSCLC. METHODS: A phase 1 dose escalation study of trametinib and ponatinib was conducted in patients with advanced NSCLC with KRAS mutations. A standard 3-plus-3 dose escalation was done. Patients were treated with the study therapy until intolerable toxicity or disease progression. RESULTS: A total of 12 patients with KRAS-mutant NSCLC were treated (seven at trametinib 2 mg and ponatinib 15 mg, five at trametinib 2 mg and ponatinib 30 mg). Common toxicities observed were rash, diarrhea, and fever. Serious adverse events potentially related to therapy were reported in five patients, including one death in the study and four cardiovascular events. Serious events were observed at both dose levels. Of note, 75% (9 of 12) were assessable for radiographic response and no confirmed partial responses were observed. The median time on study was 43 days. CONCLUSIONS: In this phase 1 study, in patients with KRAS-mutant advanced NSCLC, combined treatment with trametinib and ponatinib was associated with cardiovascular and bleeding toxicities. Exploring the combination of MEK and FGFR1 inhibition in future studies is potentially warranted but alternative agents should be considered to improve safety and tolerability.

14.
Biochem Soc Trans ; 38(Pt 1): 65-71, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20074037

ABSTRACT

The APC/C (anaphase-promoting complex/cyclosome) is an E3 ubiquitin ligase that targets specific substrates for degradation by the 26S proteasome. APC/C activity depends on two cofactors, namely Cdc20 (cell division cycle 20) and Cdh1, which select the appropriate targets for ubiquitination. It is well established that APC/C is a target of the SAC (spindle assembly checkpoint) during mitosis and has critical roles in controlling the protein levels of major regulators of mitosis and DNA replication. In addition, recent studies have suggested new cell-cycle-independent functions of APC/C in non-mitotic cells and specifically in neuronal structure and function. Given the relevant functions of APC/C in cell proliferation and neuronal physiology, modulating APC/C activity may have beneficial effects in the clinic.


Subject(s)
Cell Cycle/physiology , Ubiquitin-Protein Ligase Complexes/physiology , Anaphase-Promoting Complex-Cyclosome , Animals , Antigens, CD , Cadherins/metabolism , Cdc20 Proteins , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Humans , Neurons/cytology , Neurons/physiology , Proteasome Endopeptidase Complex/metabolism , Spindle Apparatus/metabolism
15.
Mol Cancer Ther ; 18(7): 1323-1334, 2019 07.
Article in English | MEDLINE | ID: mdl-31068384

ABSTRACT

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/therapeutic use , Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Neoplasms/metabolism , Transfection , Xenograft Model Antitumor Assays
16.
Cell Death Differ ; 25(5): 828-840, 2018 05.
Article in English | MEDLINE | ID: mdl-29229993

ABSTRACT

PP2A is a major tumor suppressor whose inactivation is frequently found in a wide spectrum of human tumors. In particular, deletion or epigenetic silencing of genes encoding the B55 family of PP2A regulatory subunits is a common feature of breast cancer cells. A key player in the regulation of PP2A/B55 phosphatase complexes is the cell cycle kinase MASTL (also known as Greatwall). During cell division, inhibition of PP2A-B55 by MASTL is required to maintain the mitotic state, whereas inactivation of MASTL and PP2A reactivation is required for mitotic exit. Despite its critical role in cell cycle progression in multiple organisms, its relevance as a therapeutic target in human cancer and its dependence of PP2A activity is mostly unknown. Here we show that MASTL overexpression predicts poor survival and shows prognostic value in breast cancer patients. MASTL knockdown or knockout using RNA interference or CRISPR/Cas9 systems impairs proliferation of a subset of breast cancer cells. The proliferative function of MASTL in these tumor cells requires its kinase activity and the presence of PP2A-B55 complexes. By using a new inducible CRISPR/Cas9 system in breast cancer cells, we show that genetic ablation of MASTL displays a significant therapeutic effect in vivo. All together, these data suggest that the PP2A inhibitory kinase MASTL may have both prognostic and therapeutic value in human breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/biosynthesis , Neoplasm Proteins/metabolism , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Mice , Mice, Nude , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Protein Phosphatase 2/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
17.
Science ; 362(6421): 1416-1422, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30573629

ABSTRACT

Molecularly targeted therapies aim to obstruct cell autonomous programs required for tumor growth. We show that mitogen-activated protein kinase (MAPK) and cyclin-dependent kinase 4/6 inhibitors act in combination to suppress the proliferation of KRAS-mutant lung cancer cells while simultaneously provoking a natural killer (NK) cell surveillance program leading to tumor cell death. The drug combination, but neither agent alone, promotes retinoblastoma (RB) protein-mediated cellular senescence and activation of the immunomodulatory senescence-associated secretory phenotype (SASP). SASP components tumor necrosis factor-α and intercellular adhesion molecule-1 are required for NK cell surveillance of drug-treated tumor cells, which contributes to tumor regressions and prolonged survival in a KRAS-mutant lung cancer mouse model. Therefore, molecularly targeted agents capable of inducing senescence can produce tumor control through non-cell autonomous mechanisms involving NK cell surveillance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cytostatic Agents/therapeutic use , Cytotoxicity, Immunologic , Immunologic Surveillance , Killer Cells, Natural/immunology , Lung Neoplasms/drug therapy , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Apoptosis , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cellular Senescence , Cytostatic Agents/pharmacology , Humans , Intercellular Adhesion Molecule-1/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases , Molecular Targeted Therapy , Mutation , Piperazines/pharmacology , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Purines/pharmacology , Purines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Retinoblastoma Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
18.
Nat Biotechnol ; 35(6): 577-582, 2017 06.
Article in English | MEDLINE | ID: mdl-28459450

ABSTRACT

Colorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids. In this model, we describe the genotype and time-dependent progression of CRCs from adenocarcinoma (6 weeks), to local disseminated disease (11-12 weeks), and spontaneous metastasis (>20 weeks). Further, we use the system to show that loss of dysregulated Wnt signaling is critical for the progression of disseminated CRCs. Thus, our approach provides a fast and flexible means to produce tailored CRC mouse models for genetic studies and pre-clinical investigation.


Subject(s)
Colorectal Neoplasms/genetics , Disease Models, Animal , Gene Editing/methods , Genes, Neoplasm/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Organ Transplantation/methods , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Male , Mice , Mice, Transgenic , Neoplasm Metastasis
19.
Article in English | MEDLINE | ID: mdl-28057848

ABSTRACT

Rapid and affordable tumor profiling has led to an explosion of genomic data that is facilitating the development of new cancer therapies. The potential of therapeutic strategies aimed at inactivating the oncogenic lesions that contribute to the aberrant survival and proliferation of tumor cells has yielded remarkable success in some malignancies such as BRAF-mutant melanoma and BCR-ABL expressing chronic myeloid leukemia. However, the direct inhibition of several well-established oncoproteins in some of these cancers is not possible or produces only transient benefits. Functional genomics represents a powerful approach for the identification of vulnerabilities linked to specific genetic alterations and has provided substantial insights into cancer signaling networks. Still, as inhibition of gene function can have diverse effects on both tumor and normal tissues, information on the potency of target inhibition on tumor growth as well as the toxic side effects of target inhibition are also needed. Here, we discuss our RNA interference (RNAi) pipeline for cancer target discovery based on our optimized short-hairpin RNA (shRNA) tools for negative selection screens and inducible RNAi platform that, in combination with embryonic stem cell (ESC)-based genetically engineered mouse models (GEMMs), enable deep in vivo target validation.


Subject(s)
Disease Models, Animal , Embryonic Stem Cells , RNA Interference/physiology , RNA, Small Interfering/genetics , Animals , Cell Proliferation/genetics , Embryonic Stem Cells/cytology , Humans , Signal Transduction/genetics
20.
Cancer Immunol Res ; 4(11): 936-947, 2016 11.
Article in English | MEDLINE | ID: mdl-27680026

ABSTRACT

The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8+ T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases. Cancer Immunol Res; 4(11); 936-47. ©2016 AACR.


Subject(s)
Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Neoplasms/genetics , Neoplasms/metabolism , Phosphotransferases/metabolism , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immunotherapy , MAP Kinase Signaling System , Melanoma, Experimental , Mice , Mice, Transgenic , Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL