Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plants (Basel) ; 12(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36679013

ABSTRACT

Bacillus subtilis was applied in peat-based soilless cultivation systems containing a mixed substrate (peat:vermiculite:perlite = 2:1:1, v/v/v) and irrigated by one-strength or four-strength Hoagland's nutrient solution to explore whether it can alleviate inhibition by higher-nutrient solutions (four-strength) and bring benefits to improvements of quality. The results showed that higher-nutrient solutions improved the flavor quality of cucumber fruit; especially, the contents of (E,Z)-2,6-nonadienal and (E)-2-Nonenal were effectively increased, which are the special flavor substances of cucumber. B. subtilis K424 effectively improved growth performance, photosynthetic capacity, vitamin C content, soluble sugars, soluble protein, and total pectin in cucumber under higher nutrition solution conditions. Compared with the higher solution treatment, the bacterial diversity significantly increased, whereas the presence of fungi had no significant difference following the B. subtilis K424 application. Moreover, B. subtilis K424 reduced the relative abundance of Actinomadura and promoted that of the Rhodanobacter, Bacillus, Pseudomonas, Devosiaceae, and Blastobotrys genera. Redundancy analysis showed that Bacillus, Rhodanobacter, and Blastobotrys were positively correlated with the substrate enzyme of sucrase, catalase, and urease. This study provides insight that B. subtilis K424 mitigated the deleterious effects of high levels of nutrition solution on cucumber growth and quality by improving the substrate enzyme, regulating the microbial community structure, and enhancing the photosynthetic capacity.

2.
Front Plant Sci ; 13: 1053780, 2022.
Article in English | MEDLINE | ID: mdl-36684769

ABSTRACT

Soil salinity severely inhibits leaf photosynthesis and limits agricultural production. Red to far-red light ratio (R/FR) affects leaf photosynthesis under salt stress, however, its regulation mechanism is still largely unknown. This study investigated the effects of different R/FR on plant growth, gas exchange parameters, photosynthetic electron transport, Calvin cycle and key gene expression under salt stress. Cucumber seedlings were exposed to four treatments including 0 mM NaCl and R/FR=7 (L7, control), 0 mM NaCl and R/FR=0.7 (L0.7), 80 mM NaCl and R/FR=7 (H7) and 80 mM NaCl and R/FR=0.7 (H0.7) for 9 days in an artificial climate chamber. The results showed that compared to L7 treatment, H7 treatment significantly reduced relative growth rate (RGR), CO2 assimilation rate (P n), maximum photochemical efficiency PSII (F v/F m), most JIP-test parameters and total Rubisco activity, indicating that salt stress severely inhibited photosynthetic electron transport from PSII to PSI and blocked Calvin cycle in cucumber leaves. However, these suppressions were effectively alleviated by low R/FR addition (H0.7 treatment). Compared to H7 treatment, H0.7 treatment significantly increased RGR and P n by 209.09% and 7.59%, respectively, enhanced F v/F m, maximum quantum yield for primary photochemistry (φ Po), quantum yield for electron transport (φ Eo) and total Rubisco activity by 192.31%, 17.6%, 36.84% and 37.08%, respectively, and largely up-regulated expressions of most key genes involved in electron transport and Calvin cycle. In conclusion, low R/FR effectively alleviated the negative effects of salt stress on leaf photosynthesis by accelerating photosynthetic electron transport from PSII to PQ pool and promoting Calvin cycle in cucumber plants. It provides a novel environmentally friendly light-quality regulation technology for high efficiency salt-resistant vegetable production.

3.
PLoS One ; 11(5): e0155298, 2016.
Article in English | MEDLINE | ID: mdl-27152599

ABSTRACT

Sub-optimal temperature extensively suppresses crop growth during cool-season greenhouse production. Root-zone (RZ) warming is considered an economical option to alleviate crop growth reduction. In this study we cultivated cucumber seedlings in nutrient solution under different air-RZ temperature treatments to investigate the effects of RZ warming on seedling growth- and photosynthesis-related parameters in leaves. The air-RZ temperature treatments included sub-optimal RZ temperature 13°C and sub-optimal air temperature 20/12°C (day/night) (S13), RZ warming at 19°C and sub-optimal air temperature (S19), and RZ warming at 19°C and optimal air temperature 26/18°C (day/night) (O19). In addition, for each air-RZ temperature treatment, half of the seedlings were also treated with 2% (m/m) polyethylene glycol (PEG) dissolved in nutrient solution to distinguish the effect of root-sourced water supply from RZ temperature. At the whole-plant level, S19 significantly increased the relative growth rate (RGR) by approximately 18% compared with S13, although the increase was less than in O19 (50%) due to delayed leaf emergence. S19 alleviated both diffusive and metabolic limitation of photosynthesis in mature leaves compared with S13, resulting in a photosynthetic rate similar to that in O19 leaves. In newly unfolded leaves, S19 significantly promoted leaf area expansion and alleviated stomatal limitation of photosynthesis compared with S13. PEG addition had a limited influence on RGR and leaf photosynthesis, but significantly suppressed new leaf expansion. Thus, our results indicate that under sub-optimal temperature conditions, RZ warming promotes cucumber seedling growth by differently benefiting mature and newly unfolded leaves. In addition, RZ warming enhanced root-sourced water supply, mainly promoting new leaf expansion, rather than photosynthesis.


Subject(s)
Cucumis sativus/physiology , Plant Leaves/physiology , Plant Roots/physiology , Stress, Physiological , Temperature , Chlorophyll/metabolism , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Fluorescence , Light , Photosynthesis , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL