Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L628-L637, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37697929

ABSTRACT

Antenatal steroid therapy is the standard of care for women at imminent risk of preterm delivery. Current dosing regimens use suprapharmacological doses to achieve extended fetal steroid exposures. We aimed to determine the lowest fetal plasma betamethasone concentration sufficient to achieve functional preterm lung maturation. Ewes with single fetuses underwent surgery to install a fetal jugular catheter. Adopting a stepwise design, ewes were randomized to either a saline-only group (negative control group; n = 9) or one of four betamethasone treatment groups. Each betamethasone group fetus received a fetal intravenous infusion to target a constant plasma betamethasone level of either 1) 2 ng/mL (2 ng/mL positive control group, n = 9); 2) 1 ng/mL, (1 ng/mL group, n = 10); 3) 0.5 ng/mL (0.5 ng/mL group, n = 10); or 4) 0.25 ng/mL (0.25 ng/mL group, n = 10). Fetuses were infused for 48 h, delivered, and ventilated. The positive control group, negative control group, and mid-point 0.5 ng/mL group animals were tested first. An interim analysis informed the final betamethasone group tested. Positive control group animals had large, statistically significant improvements in respiratory function. Based on an interim analysis, the 1.0 ng/mL group was studied in favor of the 0.25 ng/mL group. Treatment efficacy was progressively lost at plasma betamethasone concentrations lower than 2 ng/mL. We demonstrated that the acute respiratory benefit conveyed by antenatal steroid exposure in the fetal sheep is progressively lost when constant fetal plasma betamethasone concentrations are reduced below a targeted value of 2 ng/mL.NEW & NOTEWORTHY Lung maturation benefits in preterm lambs were progressively lost when fetal plasma betamethasone concentrations fell below 2 ng/mL. The effective floor threshold for a robust, lung-maturing exposure likely lies between 1 and 2 ng betamethasone per milliliter of plasma. Hypothalamic pituitary adrenal axis signaling and immunocyte populations remained materially disrupted at subtherapeutic steroid concentrations. These data demonstrate the potential to improve antenatal steroid therapy using reduced dose regimens informed by glucocorticoid pharmacokinetics and pharmacodynamics.

2.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L853-L865, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35438005

ABSTRACT

Antenatal steroids (ANSs) are routinely administered to women judged to be at imminent risk of preterm delivery. Their principal benefit is precocious functional maturation of the preterm fetal lung. Current dosing regimens expose the mother and fetus to high steroid levels that may be unnecessary, increasing the potential risks of disruption to the maternal and fetal hypothalamic-pituitary-adrenal (HPA) axis and glucose regulation, alterations in placental function, and reduced fetal growth. Using a sheep model of pregnancy, we tested the hypothesis that direct fetal administration of an ultra-low dose course of betamethasone phosphate (∼0.33 mg) would be sufficient to elicit functional maturation of the fetal lung. A jugular catheter was installed in singleton ovine fetuses at 122-day gestation under general anesthesia. Animals were randomized to receive either: 1) fetal intravenous betamethasone phosphate to target fetal plasma betamethasone mean levels of 2 ng/mL for 26 h (fetal treatment group; n = 16); 2) fetal intravenous saline for 26 h and two maternal intramuscular injections of 0.25 mg/kg betamethasone phosphate + betamethasone acetate, simulating a standard clinical treatment (maternal treatment group; n = 12); or 3) fetal intravenous saline only for 26 h (negative control group; n = 10). Fetuses were delivered 48 h after surgery, ventilated for 30 min to allow the collection of lung function and physiological data, and euthanized. Quantitative PCR and Western blots were used to assess markers of lung maturation. The average total betamethasone phosphate dose for the fetal treatment group was 1% (0.3 mg) of the maternal treatment group (31-mg betamethasone phosphate + betamethasone acetate). At 30 min of ventilation, arterial [Formula: see text], pH, heart rate, and ventilation efficacy index (VEI) were significantly (P < 0.05) and equivalently improved in both the fetal treatment group and maternal treatment group, relative to the negative control group. Similarly, SP-A, SP-C, and AQ-5 mRNA expression was significantly higher in both the fetal treatment group and maternal treatment group, relative to negative control. Maternal steroid administration was not required to generate preterm fetal lung maturation in sheep. Using a low dose and targeting steroid treatments directly to the fetus has the potential to significantly reduce maternal exposures, while simultaneously reducing the potential risk of adverse outcomes associated with current clinical dosing regimens.


Subject(s)
Fetal Organ Maturity , Glucocorticoids , Animals , Betamethasone/pharmacology , Female , Fetus , Glucocorticoids/pharmacology , Humans , Lung/metabolism , Placenta , Pregnancy , Sheep
3.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L784-L793, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35380907

ABSTRACT

Antenatal steroid (ANS) therapy is the standard care for women at imminent risk of preterm labor. Despite extensive and long-standing use, 40%-50% of babies exposed antenatally to steroids do not derive benefit; remaining undelivered 7 days or more after ANS treatment is associated with a lack of treatment benefit and increased risk of harm. We used a pregnant sheep model to evaluate the impact of continuous versus pulsed ANS treatments on fetal lung maturation at an extended, 8-day treatment to delivery interval. Continuous low-dose ANS treatments for more than 72 h in duration improved fetal lung maturation at 8 days after treatment initiation. If fetal ANS exposure was interrupted, the beneficial ANS effect was lost. Truncated treatments, including that simulating the current clinical treatment regimen, did not improve lung function. Variable fetal lung maturation was correlated to the amount of saturated phosphatidylcholine present in the lung fluid. These data demonstrate that 1) the durability of ANS therapy may be enhanced by employing an extended, low-dose treatment regimen by reducing total dose and 2) interrupting the continuity of fetal exposure by allowing it to fall below a minimal threshold was associated with comparably poor functional maturation of the preterm ovine lung.


Subject(s)
Betamethasone , Fetal Organ Maturity , Animals , Betamethasone/pharmacology , Female , Glucocorticoids/pharmacology , Humans , Lung , Pregnancy , Prenatal Care , Sheep , Steroids/pharmacology
4.
Am J Obstet Gynecol ; 227(6): 903.e1-903.e16, 2022 12.
Article in English | MEDLINE | ID: mdl-35792176

ABSTRACT

BACKGROUND: The intramuscular administration of antenatal steroids to women at risk of preterm delivery achieves high maternal and fetal plasma steroid concentrations, which are associated with adverse effects and may reduce treatment efficacy. We have demonstrated that antenatal steroid efficacy is independent of peak maternofetal steroid levels once exposure is maintained above a low threshold. OBJECTIVE: This study aimed to test, using a sheep model of pregnancy, whether the low-dose antenatal steroid regimen proposed as part of the Antenatal Corticosteroids for Improving Outcomes in Preterm Newborns trial would achieve preterm lung maturation equivalent to that of the existing World Health Organization dexamethasone treatment regimen, but with reduced risk of adverse outcomes. STUDY DESIGN: Following ethical review and approval, date-mated ewes with single fetuses received intramuscular injections of either (1) four 6-mg maternal intramuscular injections of dexamethasone phosphate every 12 hours (n=22), (2) 4 2-mg maternal intramuscular injections of betamethasone phosphate every 12 hours (n=21), or (3) 4 2-mL maternal intramuscular injections of saline every 12 hours (n=16). Of note, 48 hours after first injection, (124±1 day), lambs were delivered, ventilated for 30 minutes, and euthanized for sampling. Arterial blood gas, respiratory, hematological, and biochemical data were analyzed for between-group differences with analysis of variance according to distribution and variance, with P<.05 taken as significant. RESULTS: After 30 minutes of ventilation, lambs from both steroid-treated groups had significant and equivalent improvements in lung function relative to saline control (P<.05). There was no significant difference in arterial blood pH, pO2, pCO2, lung compliance, ventilator efficiency index, or lung volume at necropsy with a static pressure of 40 cmH2O. The messenger RNA expression of surfactant protein (Sp)a, Spb, Spc, Spd, aquaporin (Aqp)1, Aqp5, and sodium channel epithelial 1 subunit beta (Scnn1b) was equivalent between both steroid groups. Maternal and fetal plasma neutrophil, glucose, and fetal plasma C-peptide levels were significantly elevated in the dexamethasone group, relative to the betamethasone group. Fetal plasma insulin-like growth factor 1 was significantly reduced in the dexamethasone group compared with the betamethasone group (P<0.05). Fetal adrenocorticotropic hormone (r=0.53), maternal glucose value (r=-0.52), and fetal glucose values (r=-0.42) were correlated with maternal weight in the betamethasone group (P<.05), whereas fetal pCO2 and pO2 were not correlated. There was no significant difference between male and female lamb outcomes in any groups for any of the items evaluated. CONCLUSION: This study reported that in preterm lambs, a low-dose treatment regimen of 8 mg betamethasone achieves lung maturation equivalent to that of a 24-mg dexamethasone-based regimen, but with smaller perturbations to the maternofetal hypothalamic-pituitary-adrenal axis. These data suggested that given steroid pharmacokinetic differences between sheep and humans, a betamethasone dose of 2 mg may remain above the minimum dose necessary for robust maturation of the preterm lung. Maternal weight-adjusted betamethasone doses might also be a key to reducing perturbations to the maternofetal hypothalamic-pituitary-adrenal axis.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Sheep , Female , Animals , Infant, Newborn , Male , Pregnancy , Humans , Betamethasone , Glucocorticoids , Lung/metabolism , Dexamethasone , World Health Organization , Glucose/pharmacology
5.
Xenobiotica ; 52(6): 575-582, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35975955

ABSTRACT

The objective of these studies was to determine the pharmacokinetics of levonorgestrel and etonogestrel in Sprague-Dawley rat or Göttingen minipig following various administration routes.Four sequential crossover studies were conducted: Study 1 administered levonorgestrel 30 µg intravenously and intradermally in four minipigs; Study 2 administered levonorgestrel 30 µg intravenously in 12 rats; Study 3 administered levonorgestrel 60 µg intravenously and subcutaneously in 12 rats; and Study 4 administered etonogestrel 30 µg intravenously in 12 rats. Samples were quantified using liquid chromatography-tandem mass spectrometry and pharmacokinetic parameters were estimated via noncompartmental analysis.Cmax and AUCinf for etonogestrel and levonorgestrel were similar following 30 µg intravenous bolus in rats, suggesting comparable pharmacokinetics. Levonorgestrel exposure was dose-proportional in rats, based on two-fold higher AUCinf following levonorgestrel 60 versus 30 µg. The bioavailability of intradermal and subcutaneous levonorgestrel was 97.7% (Study 1) and 90.3% (Study 3), respectively. The minipig levonorgestrel clearance was 21.5 L/hr, which was about 20-fold higher than both the rat levonorgestrel (range: 0.985-1.45 L/hr) and etonogestrel clearance (range: 0.803-0.968 L/hr).These studies contribute to the gap in knowledge of nonclinical levonorgestrel and etonogestrel pharmacokinetics, which is necessary for the ongoing development of long-acting reversible contraceptives.


Subject(s)
Contraceptive Agents , Levonorgestrel , Animals , Desogestrel , Rats , Rats, Sprague-Dawley , Swine , Swine, Miniature
6.
Pediatr Res ; 89(2): 318-325, 2021 01.
Article in English | MEDLINE | ID: mdl-33177675

ABSTRACT

We review the history of antenatal corticosteroid therapy (ACS) and present recent experimental data to demonstrate that this, one of the pillars of perinatal care, has been inadequately evaluated to minimize fetal exposure to these powerful medications. There have been concerns since 1972 that fetal exposures to ACS convey risk. However, this developmental modulator, with its multiple widespread biologic effects, has not been evaluated for drug choice, dose, or duration of treatment, despite over 30 randomized trials. The treatment used in the United States is two intramuscular doses of a mixture of 6 mg betamethasone phosphate (Beta P) and 6 mg betamethasone acetate (Beta Ac). To optimize outcomes with ACS, the goal should be to minimize fetal drug exposure. We have determined that the minimum exposure needed for fetal lung maturation in sheep, monkeys, and humans (based on published cord blood corticosteroid concentrations) is about 1 ng/ml for a 48-h continuous exposure, far lower than the concentration reached by the current dosing. Because the slowly released Beta Ac results in prolonged fetal exposure, a drug containing Beta Ac is not ideal for ACS use. IMPACT: Using sheep and monkey models, we have defined the minimum corticosteroid exposure for a fetal lung maturation. These results should generate new clinical trials of antenatal corticosteroids (ACS) at much lower fetal exposures to ACS, possibly given orally, with fewer risks for the fetus.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Fetal Organ Maturity/drug effects , Lung/drug effects , Premature Birth/drug therapy , Prenatal Care , Adrenal Cortex Hormones/adverse effects , Adrenal Cortex Hormones/pharmacokinetics , Animals , Drug Compounding , Drug Dosage Calculations , Female , Gestational Age , Humans , Lung/growth & development , Models, Biological , Pregnancy , Premature Birth/diagnosis , Premature Birth/physiopathology , Risk Assessment , Risk Factors
7.
J Pharmacokinet Pharmacodyn ; 48(2): 261-272, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33389521

ABSTRACT

Population analysis of pharmacokinetic data for five differing dosage forms and routes for dexamethasone and betamethasone in 48 healthy nonpregnant Indian women was performed that accounted for a partial and complex cross-over design. Single doses of 6 mg dexamethasone phosphate (DEX-P), betamethasone phosphate (BET-P), or 1:1 mixture of betamethasone phosphate and acetate (BET-PA) were administered orally (PO) or intramuscularly (IM). Plasma concentrations collected for two periods over 96 h were described with a two-compartment model with differing PO and IM first-order absorption inputs. Clearances and volumes were divided by the IM bioavailability [Formula: see text]. The homogeneous ages, body weights, and ethnicity of the women obviated covariate analysis. Parameter estimates were obtained by the Laplace estimation method implemented in NONMEM 7.4. Typical values for dexamethasone were clearance ([Formula: see text] of 9.29 L/h, steady-state volume ([Formula: see text] of 56.4 L, IM absorption constant [Formula: see text] of 0.460 1/h and oral absorption constant ([Formula: see text] of 0.936 1/h. Betamethasone parameters were CL/FIM of 5.95 L/h, [Formula: see text] of 72.4 L, [Formula: see text] of 0.971 1/h, and [Formula: see text] of 1.21 1/h. The PO to IM F values were close to 1.0 for both drugs. The terminal half-lives averaged about 7.5 h for DEX, 17 h for BET, and 78 h for BET from BET-PA with the latter reflecting very slow release of BET from the acetate ester. Overall, BET exhibited slower clearance, larger volume of distribution, faster absorption, and longer persistence than DEX. These data may be useful in considering exposures when substituting one form of corticosteroid for another.


Subject(s)
Adrenal Cortex Hormones , Betamethasone , Dexamethasone , Adult , Female , Humans , Young Adult , Administration, Oral , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/pharmacokinetics , Betamethasone/administration & dosage , Betamethasone/pharmacokinetics , Biological Availability , Biological Variation, Population , Cross-Over Studies , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Drug Substitution , Half-Life , Healthy Volunteers , India , Injections, Intramuscular
8.
J Pharmacokinet Pharmacodyn ; 48(3): 411-438, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33954911

ABSTRACT

Population pharmacokinetic/pharmacodynamic (PK/PD) analysis was performed for extensive data for differing dosage forms and routes for dexamethasone (DEX) and betamethasone (BET) in 48 healthy nonpregnant Indian women in a partial and complex cross-over design. Single doses of 6 mg dexamethasone phosphate (DEX-P), betamethasone phosphate (BET-P), or 1:1 mixture of betamethasone phosphate and acetate (BET-PA) were administered orally (PO) or intramuscularly (IM) where each woman enrolled in a two-period cross-over study. Plasma concentrations collected over 96 h were described with a two-compartment model with differing PO and IM first-order absorption inputs. Overall, BET exhibited slower clearance, similar volume of distribution, faster absorption, and longer persistence than DEX with BET acetate producing extremely slow absorption but full bioavailability of BET. Six biomarkers were assessed over a 24-h baseline period with four showing circadian rhythms with complex baselines. These baselines and the strong responses seen after drug dosing were fitted with various indirect response models using the Laplace estimation methods in NONMEM 7.4. Both the PK and six biomarker responses were well-described with modest variability likely due to the homogeneous ages, weights, and ethnicities of the women. The drugs either inhibited or stimulated the influx processes with some models requiring joint inclusion of drug effects on circadian cortisol suppression. The biomarkers and order of sensitivity (lowest IC50/SC50 to highest) were: cortisol, T-helper cells, basophils, glucose, neutrophils, and T-cytotoxic cells. DEX sensitivities were generally greater than BET with corresponding mean ratios for these biomarkers of 2.86, 1.27, 1.72, 1.27, 2.69, and 1.06. Overall, the longer PK (e.g. half-life) of BET, but lesser PD activity (e.g. higher IC50), produces single-dose response profiles that appear quite similar, except for the extended effects from BET-PA. This comprehensive population modeling effort provides the first detailed comparison of the PK profiles and six biomarker responses of five commonly used dosage forms of DEX and BET in healthy women.


Subject(s)
Betamethasone/pharmacokinetics , Chronopharmacokinetics , Dexamethasone/pharmacokinetics , Models, Biological , Administration, Oral , Adult , Betamethasone/administration & dosage , Biomarkers , Circadian Rhythm/physiology , Cross-Over Studies , Dexamethasone/administration & dosage , Dose-Response Relationship, Drug , Female , Half-Life , Healthy Volunteers , Humans , India , Inhibitory Concentration 50 , Injections, Intramuscular , Young Adult
9.
Arterioscler Thromb Vasc Biol ; 34(3): 676-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24385236

ABSTRACT

OBJECTIVE: 8-Hydroxy-2,2,14,14-tetramethylpentadecanedioic acid (ETC-1002) is a small molecule with a unique mechanism of action shown in nonclinical studies to modulate pathways of cholesterol, fatty acid, and carbohydrate metabolism. In previous phase 2 clinical trials, once daily oral treatment with ETC-1002 significantly reduced low-density lipoprotein-cholesterol in patients with hypercholesterolemia. In this trial, the lipid-lowering efficacy of ETC-1002 was evaluated in patients with type 2 diabetes mellitus and hypercholesterolemia. Additional cardiometabolic biomarkers, including glycemic measures, were also assessed. APPROACH AND RESULTS: A single-center, double-blind, placebo-controlled trial evaluated 60 patients with type 2 diabetes mellitus and elevated low-density lipoprotein-cholesterol. Patients discontinued all diabetes mellitus and lipid-regulating drugs and were randomized to receive ETC-1002 80 mg QD for 2 weeks followed by 120 mg QD for 2 weeks or placebo for 4 weeks. ETC-1002 lowered low-density lipoprotein-cholesterol levels by 43±2.6% (least squares mean±SE), compared with a reduction of 4±2.5% by placebo at day 29 (P<0.0001; primary end point). Non-high-density lipoprotein-cholesterol and total cholesterol were also significantly lowered by ETC-1002 compared with placebo (P<0.0001). High-sensitivity C-reactive protein was reduced by 41% (median) compared with a placebo reduction of 11% (P=0.0011). No clinically meaningful safety findings were observed. CONCLUSIONS: ETC-1002 lowered low-density lipoprotein-cholesterol and other lipids and demonstrated improvement in high-sensitivity C-reactive protein in patients with type 2 diabetes mellitus and hypercholesterolemia without worsening glycemic control. ETC-1002 was well tolerated in this population. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT# 01607294.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/complications , Dicarboxylic Acids/therapeutic use , Fatty Acids/therapeutic use , Hypercholesterolemia/drug therapy , Aged , Anticholesteremic Agents/adverse effects , Antihypertensive Agents/therapeutic use , Blood Glucose/analysis , Blood Pressure , C-Reactive Protein/analysis , Cholesterol, HDL/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Dicarboxylic Acids/adverse effects , Double-Blind Method , Fasting/blood , Fatty Acids/adverse effects , Female , Humans , Hypercholesterolemia/complications , Hypertension/blood , Hypertension/complications , Hypertension/drug therapy , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Treatment Outcome , Triglycerides/blood
10.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 668-680, 2023 05.
Article in English | MEDLINE | ID: mdl-36917704

ABSTRACT

Minimal physiologically-based pharmacokinetic (mPBPK) models are an alternative to full physiologically-based pharmacokinetic (PBPK) models as they offer reduced complexity while maintaining the physiological interpretation of key model components. Full PBPK models have been developed for pregnancy, but a mPBPK model eases the ability to perform a "top-down" meta-analysis melding all available pharmacokinetic (PK) data in the mother and fetus. Our hybrid mPBPK model consists of mPBPK models for the mother and fetus with connection by the placenta. This model was applied to describe the rich PK data of antenatal corticosteroid betamethasone (BET) jointly with the limited data for dexamethasone (DEX) in the mother and fetus. Physiologic model parameters were obtained from the literature while drug-dependent parameters were estimated by the simultaneous fitting of all available data for DEX and BET. Maternal clearances of DEX and BET confirmed the literature values, and the expected fetal-to-maternal plasma ratios ranged from 0.3 to 0.4 for both drugs. Simulations of maternal plasma concentrations for the dosing regimens of BET and DEX recommended by the World Health Organization based on our findings revealed up to 60% lower exposures than found in nonpregnant women and offers a means of devising alternative dosing regimens. Our hybrid mPBPK model and meta-analysis approach could facilitate assessment of other classes of drugs indicated for the treatment of pregnant women.


Subject(s)
Models, Biological , Pregnant Women , Pregnancy , Female , Humans , Placenta , Adrenal Cortex Hormones/pharmacokinetics , Fetus , Betamethasone
11.
Singapore Med J ; 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36254928

ABSTRACT

Preterm birth (PTB; delivery prior to 37 weeks' gestation) is the leading cause of early childhood death in Singapore today. Approximately 9% of Singaporean babies are born preterm; the PTB rate is likely to increase given the increased use of assisted reproduction technologies, changes in the incidence of gestational diabetes/high body mass index and the ageing maternal population. Antenatal administration of dexamethasone phosphate is a key component of the obstetric management of Singaporean women who are at risk of imminent preterm labour. Dexamethasone improves preterm outcomes by crossing the placenta to functionally mature the fetal lung. The dexamethasone regimen used in Singapore today affords a very high maternofetal drug exposure over a brief period of time. Drawing on clinical and experimental data, we reviewed the pharmacokinetic profile and pharmacodynamic effects of dexamethasone treatment regimen in Singapore, with a view to creating a development pipeline for optimising this critically important antenatal therapy.

12.
Contracept X ; 4: 100072, 2022.
Article in English | MEDLINE | ID: mdl-35243326

ABSTRACT

Developing new long-acting products of well-characterized contraceptive drugs is one way to address some of the reasons for unmet need for modern methods of family planning among women in low- and middle-income countries. Development and approval of such products traditionally follow a conventional paradigm that includes large Phase 3 clinical trials to evaluate efficacy (pregnancy prevention) and safety of the investigational product. Exposure-bracketing is a concept that applies known pharmacokinetics and pharmacodynamics of a drug substance to inform its safe and efficacious use in humans. Several therapeutic areas have applied this concept by leveraging established drug concentration-response relationships for approved products to expedite development and shorten the timeline for the approval of an investigational product containing the same drug substance. Based on discussions at a workshop hosted by the Bill & Melinda Gates Foundation in December 2020, it appears feasible to apply exposure-bracketing to develop novel contraceptive products using well-characterized drugs.

13.
Bioorg Med Chem Lett ; 21(9): 2725-31, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21183342

ABSTRACT

The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the identification of (3R,5R)-7-(4-((3-fluorobenzyl)carbamoyl)-5-cyclopropyl-2-(4-fluorophenyl)-1H-imidazol-1-yl)-3,5-dihydroxyheptanoic acid (26) as a candidate for treating hypercholesterlemia. Clinical evaluation of 26 (PF-03491165), as well as the previously reported 2 (PF-03052334), provided an opportunity for a case study comparison of the preclinical and clinical pharmacokinetics as well as pharmacodynamics of tissue targeted HMG-CoA reductase inhibitors.


Subject(s)
Drug Discovery , Heptanoic Acids/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hypercholesterolemia/drug therapy , Imidazoles/chemical synthesis , Liver/drug effects , Animals , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Heptanoic Acids/chemistry , Heptanoic Acids/pharmacokinetics , Heptanoic Acids/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Tissue Distribution
14.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1057-1070, 2021 09.
Article in English | MEDLINE | ID: mdl-34273255

ABSTRACT

We have previously developed a maternal-fetal physiologically-based pharmacokinetic (m-f PBPK) model to dynamically predict (and verify) fetal-maternal exposure to drugs that passively diffuse across the placenta. Here, we extended the application of this model to dynamically predict fetal exposure to drugs which are effluxed by placental P-glycoprotein, namely the antenatal corticosteroids (ACS; dexamethasone [DEX], and betamethasone [BET]). To do so, we estimated both the placental P-gp mediated efflux clearance (CL) and the passive diffusion CL of the ACS. The efficacy and toxicity of the currently used maternal ACS dosing regimens to prevent neonatal respiratory distress syndrome could be improved by altering their dosing regimens. Therefore, to illustrate the utility of our m-f PBPK model, we used it to design alternative dosing regimens of DEX and BET that could potentially improve their efficacy and reduce their toxicity. The redesigned dosing regimens are convenient to administer, maintain maternal-fetal exposure (area under the concentration-time curve [AUC]) or maximum plasma concentration (Cmax ) or both (DEX and BET) or minimize maternal exposure while maintaining fetal drug plasma concentrations above the minimum therapeutic threshold of 1 ng/ml for 48 h (BET only; based on efficacy data in sheep). To our knowledge, this is the first study to dynamically predict fetal plasma concentrations of placental P-gp effluxed drugs. Our approach and our m-f PBPK model could be used in the future to predict maternal-fetal exposure to any drug and to design alternative dosing regimens of the drug.


Subject(s)
Glucocorticoids/administration & dosage , Models, Biological , Placenta/metabolism , Respiratory Distress Syndrome, Newborn/prevention & control , Animals , Area Under Curve , Betamethasone/administration & dosage , Betamethasone/pharmacokinetics , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Dose-Response Relationship, Drug , Female , Fetus/metabolism , Glucocorticoids/pharmacokinetics , Humans , Infant, Newborn , Maternal-Fetal Exchange/physiology , Pregnancy , Prenatal Care/methods , Sheep
15.
AIDS Res Hum Retroviruses ; 37(6): 409-420, 2021 06.
Article in English | MEDLINE | ID: mdl-33913760

ABSTRACT

The ability to successfully develop a safe and effective vaccine for the prevention of HIV infection has proven challenging. Consequently, alternative approaches to HIV infection prevention have been pursued, and there have been a number of successes with differing levels of efficacy. At present, only two oral preexposure prophylaxis (PrEP) products are available, Truvada and Descovy. Descovy is a newer product not yet indicated in individuals at risk of HIV-1 infection from receptive vaginal sex, because it still needs to be evaluated in this population. A topical dapivirine vaginal ring is currently under regulatory review, and a long-acting (LA) injectable cabotegravir product shows strong promise. Although demonstrably effective, daily oral PrEP presents adherence challenges for many users, particularly adolescent girls and young women, key target populations. This limitation has triggered development efforts in LA HIV prevention options. This article reviews efforts supported by the Bill & Melinda Gates Foundation, as well as similar work by other groups, to identify and develop optimal LA HIV prevention products. Specifically, this article is a summary review of a meeting convened by the foundation in early 2020 that focused on the development of LA products designed for extended delivery of tenofovir alafenamide (TAF) for HIV prevention. The review broadly serves as technical guidance for preclinical development of LA HIV prevention products. The meeting examined the technical feasibility of multiple delivery technologies, in vivo pharmacokinetics, and safety of subcutaneous (SC) delivery of TAF in animal models. Ultimately, the foundation concluded that there are technologies available for long-term delivery of TAF. However, because of potentially limited efficacy and possible toxicity issues with SC delivery, the foundation will not continue investing in the development of LA, SC delivery of TAF products for HIV prevention.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Adenine/therapeutic use , Adolescent , Alanine , Animals , Anti-HIV Agents/therapeutic use , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Tenofovir/analogs & derivatives
16.
Clin Transl Sci ; 13(2): 391-399, 2020 03.
Article in English | MEDLINE | ID: mdl-31808984

ABSTRACT

High-dose betamethasone and dexamethasone are standard of care treatments for women at risk of preterm delivery to improve neonatal respiratory and mortality outcomes. The dose in current use has never been evaluated to minimize exposures while assuring efficacy. We report the pharmacokinetics and pharmacodynamics (PDs) of oral and intramuscular treatments with single 6 mg doses of dexamethasone phosphate, betamethasone phosphate, or a 1:1 mixture of betamethasone phosphate and betamethasone acetate in reproductive age South Asian women. Intramuscular or oral betamethasone has a terminal half-life of 11 hours, about twice as long as the 5.5 hours for oral and intramuscular dexamethasone. The 1:1 mixture of betamethasone phosphate and betamethasone acetate shows an immediate release of betamethasone followed by a slow release where plasma betamethasone can be measured out to 14 days after the single dose administration, likely from a depo formed at the injection site by the acetate. PD responses were: increased glucose, suppressed cortisol, increased neutrophils, and suppressed basophils, CD3CD4 and CD3CD8 lymphocytes. PD responses were comparable for betamethasone and dexamethasone, but with longer times to return to baseline for betamethasone. The 1:1 mixture of betamethasone phosphate and betamethasone acetate caused much longer adrenal suppression because of the slow release. These results will guide the development of better treatment strategies to minimize fetal and maternal drug exposures for women at risk of preterm delivery.


Subject(s)
Betamethasone/analogs & derivatives , Dexamethasone/pharmacokinetics , Glucocorticoids/pharmacokinetics , Premature Birth/prevention & control , Administration, Oral , Adult , Betamethasone/administration & dosage , Betamethasone/adverse effects , Betamethasone/pharmacokinetics , Cross-Over Studies , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Half-Life , Humans , India , Injections, Intramuscular , Prenatal Care/methods
17.
Clin Pharmacol Ther ; 106(1): 164-173, 2019 07.
Article in English | MEDLINE | ID: mdl-30924921

ABSTRACT

Betamethasone and dexamethasone are the most widely studied antenatal corticosteroids (ACS) administered to pregnant women, just prior to the birth of a preterm neonate, to accelerate fetal lung maturation. Although betamethasone, predominantly used in developed countries, has been shown to be an effective and safe intervention for reducing neonatal mortality, the choice of ACS and optimal dosing in low and middle income countries (LMICs) remains unclear. This is primarily because the exposure-response relationships have not been established for ACS despite the long history of use. As the first step toward the optimal use of ACS in LMICs, we developed physiologically-based pharmacokinetic (PBPK) models to describe the kinetics of ACS following i.v., p.o., or i.m. dosing. In vitro data describing the cytochrome P450 3A4 enzyme contribution were incorporated and this was refined using clinical data. The models can be applied prospectively to predict kinetics of ACS in pregnant women receiving various dosing regimens.


Subject(s)
Adrenal Cortex Hormones/pharmacokinetics , Betamethasone/pharmacokinetics , Dexamethasone/pharmacokinetics , Infant, Premature/metabolism , Maternal Exposure , Adrenal Cortex Hormones/administration & dosage , Betamethasone/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Dexamethasone/administration & dosage , Drug Administration Routes , Female , Humans , Lung/drug effects , Models, Biological , Pregnancy , Pregnancy Trimester, Third
18.
PLoS One ; 14(9): e0222817, 2019.
Article in English | MEDLINE | ID: mdl-31536601

ABSTRACT

Antenatal corticosteroids (ACS) are standard of care for women at risk of preterm delivery, although choice of drug, dose or route have not been systematically evaluated. Further, ACS are infrequently used in low resource environments where most of the mortality from prematurity occurs. We report proof of principle experiments to test betamethasone-phosphate (Beta-P) or dexamethasone-phosphate (Dex-P) given orally in comparison to the clinical treatment with the intramuscular combination drug beta-phosphate plus beta-acetate in a Rhesus Macaque model. First, we performed pharmacokinetic studies in non-pregnant monkeys to compare blood levels of the steroids using oral dosing with Beta-P, Dex-P and an effective maternal intramuscular dose of the beta-acetate component of the clinical treatment. We then evaluated maternal and fetal blood steroid levels with limited fetal sampling under ultrasound guidance in pregnant macaques. We found that oral Beta is more slowly cleared from plasma than oral Dex. The blood levels of both drugs were lower in maternal plasma of pregnant than in non-pregnant macaques. Using the pharmacokinetic data, we treated groups of 6-8 pregnant monkeys with oral Beta-P, oral Dex-P, or the maternal intramuscular clinical treatment and saline controls and measured pressure-volume curves to assess corticosteroid effects on lung maturation at 5d. Oral Beta-P improved the pressure-volume curves similarly to the clinical treatment. Oral Dex-P gave more variable and nonsignificant responses. We then compared gene expression in the fetal lung, liver and hippocampus between oral Beta-P and the clinical treatment by RNA-sequencing. The transcriptomes were largely similar with small gene expression differences in the lung and liver, and no differences in the hippocampus between the groups. As proof of principle, ACS therapy can be effective using inexpensive and widely available oral drugs. Clinical dosing strategies must carefully consider the pharmacokinetics of oral Beta-P or Dex-P to minimize fetal exposure while achieving the desired treatment responses.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Betamethasone/analogs & derivatives , Dexamethasone/analogs & derivatives , Models, Animal , Prenatal Care/methods , Administration, Oral , Adrenal Cortex Hormones/blood , Adrenal Cortex Hormones/pharmacokinetics , Animals , Betamethasone/administration & dosage , Betamethasone/blood , Betamethasone/pharmacokinetics , Dexamethasone/administration & dosage , Dexamethasone/blood , Dexamethasone/pharmacokinetics , Female , Fetal Organ Maturity/drug effects , Fetal Organ Maturity/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/drug effects , Hippocampus/drug effects , Hippocampus/embryology , Humans , Injections, Intramuscular , Liver/drug effects , Liver/embryology , Liver/metabolism , Lung/drug effects , Lung/embryology , Lung/metabolism , Macaca mulatta , Pregnancy , Premature Birth/genetics , Premature Birth/metabolism
19.
Arthritis Rheumatol ; 67(3): 616-25, 2015 03.
Article in English | MEDLINE | ID: mdl-25470338

ABSTRACT

OBJECTIVE: Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. METHODS: This was a phase I open-label mechanism-of-action study. Cholesterol and lipoprotein kinetics were assessed with (13) C-cholesterol and (13) C-leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. RESULTS: Levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A-I (Apo A-I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL-associated Apo A-I fractional catabolic rate, or LDL-associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. CONCLUSION: This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Biomarkers/blood , Cholesterol/blood , Lipoproteins/blood , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Adolescent , Adult , Aged , Arthritis, Rheumatoid/blood , Female , Healthy Volunteers , Humans , Hungary , Male , Middle Aged , Piperidines/adverse effects , Protein Kinase Inhibitors/adverse effects , Pyrimidines/adverse effects , Pyrroles/adverse effects , Young Adult
20.
Am J Ther ; 1(1): 49-57, 1994 Jun.
Article in English | MEDLINE | ID: mdl-11835067

ABSTRACT

Methylprednisolone (MP) pharmacokinetics and its directly suppressive effects on cortisol secretion, circulating T-cells, and basophils in blood were compared in six chronic renal failure (CRF) subjects and six healthy controls after an IV administration of MP 0.6 mg kg(minus sign1) as the sodium succinate ester. The CRF subjects were studied between hemodialysis treatments. The total clearance of methylprednisolone sodium succinate (the prodrug) was reduced by 40% in CRF; however, the pharmacokinetics of methylprednisolone remained unchanged. Methylprednisolone clearance was approximately 280 ml h(minus sign1) kg(minus sign1) and volume of distribution was about 1.1 L kg(minus sign1). Physiological pharmacodynamic models were applied for the immediate effects of MP, based on the premise that receptor binding is followed by rapid suppression of the secretion of cortisol and recirculation of basophils, T-helper cells, and T-suppressor cells, which persist until inhibitory concentrations (IC(50)) of methylprednisolone disappear. The difference in IC(50) for each pharmacodynamic parameter was not statistically significant, suggesting no difference in the responsiveness of these factors to methylprednisolone in CRF. As the pharmacokinetics of other corticosteroids are altered in CRF, the lack of pharmacokinetic and pharmacodynamic changes of methylprednisolone may engender a therapeutic advantage for this corticosteroid in CRF.

SELECTION OF CITATIONS
SEARCH DETAIL