Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38530646

ABSTRACT

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Subject(s)
Brain , Ocular Motility Disorders , Receptors, Dopamine D2 , Transcriptome , Humans , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Ocular Motility Disorders/genetics , Brain/metabolism , Male , Female , Middle Aged , Adult , Nerve Net/metabolism , Aged , Dopamine/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism
2.
Brain ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808482

ABSTRACT

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

3.
Ann Neurol ; 94(2): 271-284, 2023 08.
Article in English | MEDLINE | ID: mdl-37177857

ABSTRACT

OBJECTIVE: This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS: To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS: Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION: These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , White Matter , Humans , Subthalamic Nucleus/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Treatment Outcome
4.
Neuroimage ; 268: 119862, 2023 03.
Article in English | MEDLINE | ID: mdl-36610682

ABSTRACT

Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
Ann Neurol ; 91(5): 613-628, 2022 05.
Article in English | MEDLINE | ID: mdl-35165921

ABSTRACT

OBJECTIVE: With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS: Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS: Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2  = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2  = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2  = 0.37, p = 0.002). INTERPRETATION: Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Aged , Aged, 80 and over , Deep Brain Stimulation/methods , Diffusion Tensor Imaging/methods , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies , Thalamus/diagnostic imaging
6.
Brain ; 145(1): 362-377, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34324658

ABSTRACT

Subcallosal cingulate deep brain stimulation produces long-term clinical improvement in approximately half of patients with severe treatment-resistant depression. We hypothesized that both structural and functional brain attributes may be important in determining responsiveness to this therapy. In a treatment-resistant depression subcallosal cingulate deep brain stimulation cohort, we retrospectively examined baseline and longitudinal differences in MRI-derived brain volume (n = 65) and 18F-fluorodeoxyglucose-PET glucose metabolism (n = 21) between responders and non-responders. Support vector machines were subsequently trained to classify patients' response status based on extracted baseline imaging features. A machine learning model incorporating preoperative frontopolar, precentral/frontal opercular and orbitofrontal local volume values classified binary response status (12 months) with 83% accuracy [leave-one-out cross-validation (LOOCV): 80% accuracy] and explained 32% of the variance in continuous clinical improvement. It was also predictive in an out-of-sample subcallosal cingulate deep brain stimulation cohort (n = 21) with differing primary indications (bipolar disorder/anorexia nervosa; 76% accuracy). Adding preoperative glucose metabolism information from rostral anterior cingulate cortex and temporal pole improved model performance, enabling it to predict response status in the treatment-resistant depression cohort with 86% accuracy (LOOCV: 81% accuracy) and explain 67% of clinical variance. Response-related patterns of metabolic and structural post-deep brain stimulation change were also observed, especially in anterior cingulate cortex and neighbouring white matter. Areas where responders differed from non-responders-both at baseline and longitudinally-largely overlapped with depression-implicated white matter tracts, namely uncinate fasciculus, cingulum bundle and forceps minor/rostrum of corpus callosum. The extent of patient-specific engagement of these same tracts (according to electrode location and stimulation parameters) also served as an independent predictor of treatment-resistant depression response status (72% accuracy; LOOCV: 70% accuracy) and augmented performance of the volume-based (88% accuracy; LOOCV: 82% accuracy) and combined volume/metabolism-based support vector machines (100% accuracy; LOOCV: 94% accuracy). Taken together, these results indicate that responders and non-responders to subcallosal cingulate deep brain stimulation exhibit differences in brain volume and metabolism, both pre- and post-surgery. Moreover, baseline imaging features predict response to treatment (particularly when combined with information about local tract engagement) and could inform future patient selection and other clinical decisions.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Deep Brain Stimulation/methods , Depression , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy , Gyrus Cinguli , Humans , Retrospective Studies
7.
Brain ; 145(1): 251-262, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34453827

ABSTRACT

The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at P < 0.001; R = 0.34 at P = 0.032). Next, we calculated an agreement map, which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on each cohort alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Globus Pallidus , Humans , Parkinson Disease/therapy , Retrospective Studies
8.
Brain ; 145(12): 4385-4397, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35026844

ABSTRACT

Brain lesions are a rare cause of tic disorders. However, they can provide uniquely causal insights into tic pathophysiology and can also inform on possible neuromodulatory therapeutic targets. Based on a systematic literature review, we identified 22 cases of tics causally attributed to brain lesions and employed 'lesion network mapping' to interrogate whether tic-inducing lesions would be associated with a common network in the average human brain. We probed this using a normative functional connectome acquired in 1000 healthy participants. We then examined the specificity of the identified network by contrasting tic-lesion connectivity maps to those seeding from 717 lesions associated with a wide array of neurological and/or psychiatric symptoms within the Harvard Lesion Repository. Finally, we determined the predictive utility of the tic-inducing lesion network as a therapeutic target for neuromodulation. Specifically, we collected retrospective data of 30 individuals with Tourette disorder, who underwent either thalamic (n = 15; centromedian/ventrooralis internus) or pallidal (n = 15; anterior segment of globus pallidus internus) deep brain stimulation and calculated whether connectivity between deep brain stimulation sites and the lesion network map could predict clinical improvements. Despite spatial heterogeneity, tic-inducing lesions mapped to a common network map, which comprised the insular cortices, cingulate gyrus, striatum, globus pallidus internus, thalami and cerebellum. Connectivity to a region within the anterior striatum (putamen) was specific to tic-inducing lesions when compared with control lesions. Connectivity between deep brain stimulation electrodes and the lesion network map was predictive of tic improvement, regardless of the deep brain stimulation target. Taken together, our results reveal a common brain network involved in tic generation, which shows potential as a therapeutic target for neuromodulation.


Subject(s)
Deep Brain Stimulation , Tics , Tourette Syndrome , Humans , Deep Brain Stimulation/methods , Retrospective Studies , Treatment Outcome , Brain/pathology , Neural Networks, Computer
9.
Ann Neurol ; 89(3): 426-443, 2021 03.
Article in English | MEDLINE | ID: mdl-33252146

ABSTRACT

Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment-resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.


Subject(s)
Anorexia Nervosa/therapy , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/therapy , Dystonia/therapy , Parkinson Disease/therapy , Tremor/therapy , Adult , Aged , Brain Mapping , Connectome , Female , Globus Pallidus/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Patient-Specific Modeling , Probability , Retrospective Studies , Subthalamic Nucleus/diagnostic imaging , Treatment Outcome , Ventral Thalamic Nuclei/diagnostic imaging
10.
Brain ; 144(3): 712-723, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33313788

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus, pallidum, and thalamus is an established therapy for various movement disorders. Limbic targets have also been increasingly explored for their application to neuropsychiatric and cognitive disorders. The brainstem constitutes another DBS substrate, although the existing literature on the indications for and the effects of brainstem stimulation remains comparatively sparse. The objective of this review was to provide a comprehensive overview of the pertinent anatomy, indications, and reported stimulation-induced acute and long-term effects of existing white and grey matter brainstem DBS targets. We systematically searched the published literature, reviewing clinical trial articles pertaining to DBS brainstem targets. Overall, 164 studies describing brainstem DBS were identified. These studies encompassed 10 discrete structures: periaqueductal/periventricular grey (n = 63), pedunculopontine nucleus (n = 48), ventral tegmental area (n = 22), substantia nigra (n = 9), mesencephalic reticular formation (n = 7), medial forebrain bundle (n = 8), superior cerebellar peduncles (n = 3), red nucleus (n = 3), parabrachial complex (n = 2), and locus coeruleus (n = 1). Indications for brainstem DBS varied widely and included central neuropathic pain, axial symptoms of movement disorders, headache, depression, and vegetative state. The most promising results for brainstem DBS have come from targeting the pedunculopontine nucleus for relief of axial motor deficits, periaqueductal/periventricular grey for the management of central neuropathic pain, and ventral tegmental area for treatment of cluster headaches. Brainstem DBS has also acutely elicited numerous motor, limbic, and autonomic effects. Further work involving larger, controlled trials is necessary to better establish the therapeutic potential of DBS in this complex area.


Subject(s)
Brain Stem/physiology , Deep Brain Stimulation/methods , Humans
11.
Brain ; 144(11): 3529-3540, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34145884

ABSTRACT

Obsessive-compulsive disorder is a debilitating and often refractory psychiatric disorder. Magnetic resonance-guided focused ultrasound is a novel, minimally invasive neuromodulatory technique that has shown promise in treating this condition. We investigated the relationship between lesion location and long-term outcome in patients with obsessive-compulsive disorder treated with focused ultrasound to discern the optimal lesion location and elucidate the efficacious network underlying symptom alleviation. Postoperative images of 11 patients who underwent focused ultrasound capsulotomy were used to correlate lesion characteristics with symptom improvement at 1-year follow-up. Normative resting-state functional MRI and normative diffusion MRI-based tractography analyses were used to determine the networks associated with successful lesions. Patients with obsessive-compulsive disorder treated with inferior thalamic peduncle deep brain stimulation (n = 5) and lesions from the literature implicated in obsessive-compulsive disorder (n = 18) were used for external validation. Successful long-term relief of obsessive-compulsive disorder was associated with lesions that included a specific area in the dorsal anterior limb of the internal capsule. Normative resting-state functional MRI analysis showed that lesion engagement of areas 24 and 46 was significantly associated with clinical outcomes (R = 0.79, P = 0.004). The key role of areas 24 and 46 was confirmed by (i) normative diffusion MRI-based tractography analysis, showing that streamlines associated with better outcome projected to these areas; (ii) association of these areas with outcomes in patients receiving inferior thalamic peduncle deep brain stimulation (R = 0.83, P = 0.003); and (iii) the connectedness of these areas to obsessive-compulsive disorder-causing lesions, as identified using literature-based lesion network mapping. These results provide considerations for target improvement, outlining the specific area of the internal capsule critical for successful magnetic resonance-guided focused ultrasound outcome and demonstrating that discrete frontal areas are involved in symptom relief. This could help refine focused ultrasound treatment for obsessive-compulsive disorder and provide a network-based rationale for potential alternative targets.


Subject(s)
Internal Capsule/surgery , Neurosurgical Procedures/methods , Obsessive-Compulsive Disorder/surgery , Ultrasonic Surgical Procedures/methods , Adult , Cohort Studies , Female , Humans , Male , Retrospective Studies , Surgery, Computer-Assisted/methods , Treatment Outcome
12.
Brain ; 144(9): 2837-2851, 2021 10 22.
Article in English | MEDLINE | ID: mdl-33905474

ABSTRACT

Because of its involvement in a wide variety of cardiovascular, metabolic and behavioural functions, the hypothalamus constitutes a potential target for neuromodulation in a number of treatment-refractory conditions. The precise neural substrates and circuitry subserving these responses, however, are poorly characterized to date. We sought to retrospectively explore the acute sequelae of hypothalamic region deep brain stimulation and characterize their neuroanatomical correlates. To this end we studied-at multiple international centres-58 patients (mean age: 68.5 ± 7.9 years, 26 females) suffering from mild Alzheimer's disease who underwent stimulation of the fornix region between 2007 and 2019. We catalogued the diverse spectrum of acutely induced clinical responses during electrical stimulation and interrogated their neural substrates using volume of tissue activated modelling, voxel-wise mapping, and supervised machine learning techniques. In total 627 acute clinical responses to stimulation-including tachycardia, hypertension, flushing, sweating, warmth, coldness, nausea, phosphenes, and fear-were recorded and catalogued across patients using standard descriptive methods. The most common manifestations during hypothalamic region stimulation were tachycardia (30.9%) and warmth (24.6%) followed by flushing (9.1%) and hypertension (6.9%). Voxel-wise mapping identified distinct, locally separable clusters for all sequelae that could be mapped to specific hypothalamic and extrahypothalamic grey and white matter structures. K-nearest neighbour classification further validated the clinico-anatomical correlates emphasizing the functional importance of identified neural substrates with area under the receiving operating characteristic curves between 0.67 and 0.91. Overall, we were able to localize acute effects of hypothalamic region stimulation to distinct tracts and nuclei within the hypothalamus and the wider diencephalon providing clinico-anatomical insights that may help to guide future neuromodulation work.


Subject(s)
Affect/physiology , Autonomic Nervous System/diagnostic imaging , Brain Mapping/methods , Cognition/physiology , Deep Brain Stimulation/methods , Hypothalamus/diagnostic imaging , Aged , Autonomic Nervous System/physiology , Body Temperature/physiology , Electrodes, Implanted , Female , Humans , Hypothalamus/physiology , Hypothalamus/surgery , Male , Middle Aged , Prospective Studies , Tachycardia/diagnostic imaging , Tachycardia/physiopathology
13.
Epilepsy Behav ; 116: 107774, 2021 03.
Article in English | MEDLINE | ID: mdl-33549939

ABSTRACT

BACKGROUND: Large hypothalamic hamartomas (HH) are often associated with difficult-to-treat, refractory seizures. Although magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a useful tool to treat these challenging lesions, postoperative outcomes are variable and potentially related to differences in surgical targeting. PURPOSE: We sought to identify differences in the anatomic localization of laser ablations that either did or did not result in seizure freedom. METHODS: Four children who underwent MRgLITT for large HH (3 seizure-free and 1 not seizure-free) were included in the analysis. Ablation volumes were segmented, normalized, and overlaid on a high-resolution hypothalamic atlas. For each lesion, the size, spatial extent, and degree of overlap with key hypothalamic nuclei and surrounding brain regions were computed and compared between ablations that did and did not result in seizure freedom. RESULTS: Ablation masks that resulted in seizure freedom were smaller and located more centrally than the ablation mask that did not. In addition, ablation masks that resulted in seizure freedom overlapped with regions including the paraventricular nucleus, the posterior hypothalamus and the zona incerta, fornix, and mammillothalamic tract, whereas the single non-seizure-free ablation did not. CONCLUSION: Differences in the size, position, and anatomical localization of ablation volumes may be a potential contributor to the variability in postoperative outcomes of large HH treated with MRgLITT. A novel, high-resolution MRI atlas of the hypothalamus identifies a number of regions at the interface of large HH that are preferentially disconnected in seizure-free patients. This method of anatomical localization not only serves as a potential clinical tool for surgical targeting but may also provide novel insights into the mechanisms of epileptogenesis in hypothalamic hamartomas.


Subject(s)
Drug Resistant Epilepsy , Hamartoma , Hypothalamic Diseases , Laser Therapy , Child , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Freedom , Hamartoma/complications , Hamartoma/surgery , Humans , Hypothalamic Diseases/complications , Hypothalamic Diseases/surgery , Lasers , Magnetic Resonance Imaging , Seizures/etiology , Seizures/surgery , Treatment Outcome
14.
Stereotact Funct Neurosurg ; 99(2): 123-134, 2021.
Article in English | MEDLINE | ID: mdl-33249416

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) is a neuromodulation technology widely used in the treatment of intractable chronic pain syndromes. SCS is now being applied more broadly as a possible therapy for a range of indications, including neurological, cardiac, and gastrointestinal disorders. Ongoing research in this field is critical in order to gain further insights into the mechanisms of SCS, determine its role in new indications, and refine programming techniques for the optimization of therapeutic outcomes. OBJECTIVE: To assess the state of SCS-related human research by cataloging and summarizing clinical trials that have been recently completed or are currently underway in this field. METHODS: A search was conducted for clinical trials pertaining to SCS using the ClinicalTrials.gov database. Trials were analyzed to generate a detailed overview of ongoing SCS-related research. Specifically, trials were categorized by intervention, trial start date, study completion status, clinical phase, projected subject enrollment, condition, country of origin, device manufacturer, funding source, and study topic. RESULTS: In total, 212 relevant clinical trials were identified. 175 trials (82.5%) involved invasive SCS, while the remaining 37 trials (17.5%) used noninvasive forms of spinal stimulation. Most trials examined the efficacy of SCS for chronic pain syndromes or new indications, while others assessed different stimulation parameters. The studies spanned >27 different disorders, with almost 20% of trials pertaining to conditions other than chronic pain syndromes. The majority of SCS trials were US-based (55.7% of studies), but many countries (e.g., Belgium and UK) are becoming increasingly active. The ratio of investigator-sponsored to industry-sponsored trials was 2:1. Emphasizing the need to optimize therapeutic outcomes of SCS, one-quarter of trials predominantly focused on the assessment of alternative stimulation parameters such as burst or high-frequency stimulation. CONCLUSIONS: A large number of clinical trials of SCS are underway. Improvements in the treatment of pain and novel indications for SCS constitute the majority of studies. This overview of SCS-related clinical trials provides a window into future new indications, novel stimulation techniques, and a heightened understanding of the mechanisms of action.


Subject(s)
Chronic Pain , Spinal Cord Stimulation , Chronic Pain/therapy , Clinical Trials as Topic , Humans , Pain Management
15.
Alzheimers Dement ; 17(5): 777-787, 2021 05.
Article in English | MEDLINE | ID: mdl-33480187

ABSTRACT

INTRODUCTION: Fornix deep brain stimulation (fx-DBS) is under investigation for treatment of Alzheimer's disease (AD). We investigated the anatomic correlates of flashback phenomena that were reported previously during acute diencephalic stimulation. METHODS: Thirty-nine patients with mild AD who took part in a prior fx-DBS trial (NCT01608061) were studied. After localizing patients' implanted electrodes and modeling the volume of tissue activated (VTA) by DBS during systematic stimulation testing, we performed (1) voxel-wise VTA mapping to identify flashback-associated zones; (2) machine learning-based prediction of flashback occurrence given VTA overlap with specific structures; (3) normative functional connectomics to define flashback-associated brain-wide networks. RESULTS: A distinct diencephalic region was associated with greater flashback likelihood. Fornix, bed nucleus of stria terminalis, and anterior commissure involvement predicted memory events with 72% accuracy. Flashback-inducing stimulation exhibited greater functional connectivity to a network of memory-evoking and autobiographical memory-related sites. DISCUSSION: These results clarify the neuroanatomical substrates of stimulation-evoked flashbacks.


Subject(s)
Alzheimer Disease/therapy , Deep Brain Stimulation , Fornix, Brain , Memory/physiology , Aged , Brain , Female , Humans , Machine Learning , Magnetic Resonance Imaging , Male
16.
Radiology ; 296(2): 250-262, 2020 08.
Article in English | MEDLINE | ID: mdl-32573388

ABSTRACT

MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.


Subject(s)
Brain/diagnostic imaging , Deep Brain Stimulation/instrumentation , Magnetic Resonance Imaging , Patient Safety/standards , Computer Simulation , Hot Temperature/adverse effects , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/standards , Neural Prostheses/adverse effects , Phantoms, Imaging
17.
Stereotact Funct Neurosurg ; 98(3): 182-186, 2020.
Article in English | MEDLINE | ID: mdl-32224617

ABSTRACT

Essential tremor (ET) is a disabling movement disorder that is most prevalent among the elderly. While deep brain stimulation surgery targeting the ventral intermediate nucleus of the thalamus is commonly used to treat ET, the most elderly patients or those with multiple medical comorbidities may not qualify as surgical candidates. Magnetic resonance-guided focused ultrasound (MRgFUS) constitutes a less invasive modality that may be used to perform thalamotomy without the need for a burr hole craniotomy. Here, we report on 2 patients over the age of 90 years who benefited significantly from MRgFUS thalamotomy to relieve their symptoms and improve their quality of life. The procedure was well tolerated and performed safely in both patients. We conclude that age should not be a limiting factor in the treatment of patients with MRgFUS.


Subject(s)
Essential Tremor/diagnostic imaging , Essential Tremor/surgery , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/surgery , Ultrasonography, Interventional/methods , Aged, 80 and over , Female , Humans , Male , Psychosurgery/methods , Quality of Life , Treatment Outcome
18.
Neuromodulation ; 22(4): 493-502, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889314

ABSTRACT

OBJECTIVES: Despite its efficacy in tremor-suppression, the ventral intermediate thalamic (VIM) nucleus has largely been neglected in deep brain stimulation (DBS) for tremor-dominant Parkinson's disease (tdPD). The employment of a parietal approach, however, allows stimulation of VIM and subthalamic nucleus (STN) using one trajectory only and thus constitutes a promising alternative to existing strategies. In the present study, we investigate safety and efficacy of combined lead implantation and stimulation of STN and VIM using a parietal approach. MATERIALS AND METHODS: Retrospective analysis of five patients with tdPD was performed who underwent DBS using a parietal approach. Changes in symptom severity, disease-specific health-related quality of life and l-dopa equivalent doses (LED) were evaluated over a total time course of 12 months. RESULTS: DBS within both targets yielded significant improvement of parkinsonian symptoms (median: 40.0%, p = 0.04) in the first 6 months of continuous stimulation and remained stable thereafter (median improvement at 12 months: 43.2%, p = 0.07). Sustained improvement of tremor (median at 6 months: 100.0%, p = 0.04; median at 12 months 83.3%, p = 0.04) and quality of life scores (median at 6 months: 29.8%, p = 0.04; median at 12 months: 32.6%, p = 0.04) was noted throughout the follow-up period. No significant change of LEDs was observed by the end of follow-up (median decrease: 2.2%, p = 0.89). CONCLUSIONS: Simultaneous DBS of VIM and STN using one trajectory is safe, yielding good control of parkinsonian tremors. Further studies, however, are necessary to determine whether a parietal trajectory affords better control over tremor symptoms than established strategies and hence justifies the potential risks associated with the alternative approach.


Subject(s)
Deep Brain Stimulation/methods , Parietal Lobe/diagnostic imaging , Parkinson Disease/diagnostic imaging , Subthalamic Nucleus/diagnostic imaging , Tremor/diagnostic imaging , Ventral Thalamic Nuclei/diagnostic imaging , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Parietal Lobe/physiology , Parkinson Disease/therapy , Retrospective Studies , Subthalamic Nucleus/physiology , Tremor/physiopathology , Tremor/therapy , Ventral Thalamic Nuclei/physiology
20.
Stereotact Funct Neurosurg ; 96(5): 327-334, 2018.
Article in English | MEDLINE | ID: mdl-30481770

ABSTRACT

BACKGROUND/AIMS: Technological advancements had a serious impact on the evolution of robotic systems in stereotactic neurosurgery over the last three decades and may turn robot-assisted stereotactic neurosurgery into a sophisticated alternative to purely mechanical guiding devices. OBJECTIVES: To compare robot-assisted and conventional frame-based deep brain stimulation (DBS) surgery with regard to accuracy, precision, reliability, duration of surgery, intraoperative imaging quality, safety and maintenance using a standardized setup. METHODS: Retrospective evaluation of 80 consecutive patients was performed who underwent DBS surgery using either a frame-based mechanical stereotactic guiding device (n = 40) or a stereotactic robot (ROSA Brain, MedTech, Montpellier, France) (n = 40). RESULTS: The mean accuracy of robot-assisted and conventional lead implantation was 0.76 mm (SD: 0.37 mm, range: 0.17-1.52 mm) and 1.11 mm (SD: 0.59 mm, range: 0.10-2.90 mm), respectively. We observed a statistically significant difference in accuracy (p < 0.001) when comparing lateral deviations between both modalities. Furthermore, a statistical significance was observed when investigating the proportion of values exceeding 2.00 mm between both groups (p = 0.013). In 8.75% (n = 7) of conventionally implanted leads, lateral deviations were greater than 2.0 mm. With a maximum value of 1.52 mm, this threshold was never reached during robot-guided DBS. The mean duration of DBS surgery could be reduced significantly (p < 0.001) when comparing robot-guided DBS (mean: 325.1 ± 81.6 min) to conventional lead implantation (mean: 394.8 ± 66.6 min). CONCLUSIONS: Robot-assisted DBS was shown to be superior to conventional lead implantation with respect to accuracy, precision and operation time. Improved quality control, continuous intraoperative monitoring and less manual adjustment likely contribute to the robotic system's reliability allowing high accuracy during lead implantation despite limited experience. Hence, robot-assisted lead implantation can be considered an appropriate and reliable alternative to purely mechanical devices.


Subject(s)
Brain/diagnostic imaging , Brain/surgery , Deep Brain Stimulation/methods , Neurosurgical Procedures/methods , Robotic Surgical Procedures/methods , Stereotaxic Techniques , Adult , Aged , Female , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/surgery , Reproducibility of Results , Retrospective Studies , Stereotaxic Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL