Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220561

ABSTRACT

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Subject(s)
Carcinogenesis/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics , Calcium Signaling/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Macrophages/metabolism , Macrophages/pathology , NF-kappa B/genetics , Neoplasms/pathology , Phosphorylation , Signal Transduction/genetics , Xenograft Model Antitumor Assays
2.
J Cell Biochem ; 125(2): e30504, 2024 02.
Article in English | MEDLINE | ID: mdl-37992225

ABSTRACT

This study aimed to investigate the effect and mechanism of 2α, 3α, 24-thrihydroxyurs-12-en-24-ursolic acid (TEOA) alone or in combination with cisplatin on oral cancer. TEOA, a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha, has demonstrated antitumor activity in preclinical experiments. However, its role in oral cancer remains poorly understood. Our findings revealed that a low concentration of TEOA did not exhibit significant cytotoxicity against oral squamous cell carcinoma cells. However, when combined with cisplatin, TEOA showed a significant therapeutic effect. The combined treatments resulted in a significant inhibition of proliferation and migration and a significant increase in apoptosis of squamous cell carcinoma cells. Cisplatin exposure increased autophagy levels, which may contribute to chemoresistance. Of note, the presence of TEOA significantly inhibited cisplatin-induced autophagy, leading to improved chemotherapy efficacy. Our findings indicate that a mild low dosage of TEOA may enhance the cytotoxic effect of cisplatin by downregulating autophagy in oral cancer cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ursolic Acid , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy , Apoptosis , Drug Resistance, Neoplasm , Cell Proliferation
3.
J Cell Biochem ; 125(2): e30519, 2024 02.
Article in English | MEDLINE | ID: mdl-38224137

ABSTRACT

Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.


Subject(s)
Acute Lung Injury , Exosomes , Mesenchymal Stem Cell Transplantation , Humans , Lipopolysaccharides/adverse effects , Exosomes/metabolism , Macrophages, Alveolar/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Umbilical Cord/metabolism
4.
Cell Tissue Bank ; 25(2): 677-684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466563

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases in critically ill patients. Although pathophysiology of ALI/ARDS has been investigated in many studies, effective therapeutic strategies are still limited. Mesenchymal stem cell (MSC)-based therapy is emerging as a promising therapeutic intervention for patients with ALI. During the last two decades, researchers have focused on the efficacy and mechanism of MSC application in ALI animal models. MSC derived from variant resources exhibited therapeutic effects in preclinical studies of ALI with different mechanisms. Based on this, clinical studies on MSC treatment in ALI/ARDS has been tried recently, especially in COVID-19 caused lung injury. Emerging clinical trials of MSCs in treating COVID-19-related conditions have been registered in past two years. The advantages and potential of MSCs in the defense against COVID-19-related ALI or ARDS have been confirmed. This review provides a brief overview of recent research progress in MSC-based therapies in preclinical study and clinical trials in ALI treatment, as well as the underlying mechanisms.


Subject(s)
Acute Lung Injury , COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , SARS-CoV-2 , Humans , Acute Lung Injury/therapy , COVID-19/therapy , Mesenchymal Stem Cells/cytology , Animals , Respiratory Distress Syndrome/therapy , Clinical Trials as Topic
5.
J Cell Biochem ; 124(9): 1241-1248, 2023 09.
Article in English | MEDLINE | ID: mdl-37668145

ABSTRACT

Acute lung injury (ALI) is a severe medical condition that causes inflammation and fluid buildup in the lung, resulting in respiratory distress. Moreover, ALI often occurs as a complication of other medical conditions or injuries, including the coronavirus disease of 2019. Mesenchymal stem/stromal cells (MSCs) are being studied extensively for their therapeutic potential in various diseases, including ALI. The results of recent studies suggest that the beneficial effects of MSCs may not be primarily due to the replacement of damaged cells but rather the release of extracellular vesicles (EVs) and other soluble factors through a paracrine mechanism. Furthermore, EVs derived from MSCs preserve the therapeutic action of the parent MSCs and this approach avoids the safety issues associated with live cell therapy. Thus, MSC-based cell-free therapy may be the focus of future clinical treatments.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Acute Lung Injury/therapy , Cell- and Tissue-Based Therapy , Inflammation
6.
J Cell Biochem ; 124(9): 1249-1258, 2023 09.
Article in English | MEDLINE | ID: mdl-37450693

ABSTRACT

This study aims to investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) administration on tissue repair following acute lung injury (ALI). PMSCs were transplanted intravenously to a mouse model of lipopolysaccharide-induced ALI. The therapeutic effects were determined by evaluating several indicators, including pathology; the wet/dry ratio of the lungs; blood gas analysis; the total protein content, cell numbers, and the activity of myeloperoxidase (MPO) in bronchial alveolar lavage fluid (BALF); and the levels of anti-inflammatory and proinflammatory cytokines in serum and BALF. To investigate the underlying mechanism, PMSC-derived exosomes were used for ALI treatment. Administration of PMSCs improved the degree of lung injury, reduced inflammation, increased the expression levels of anti-inflammatory cytokines, and protected lung function. As expected, the effects of PMSC-derived exosomes in the ALI model were similar to those of PMSCs, both in terms of improved lung function and reduced inflammation. These findings suggest that PMSCs have ameliorating effects on ALI that are potentially mediated via their secreted exosomes.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , Mice , Animals , Humans , Mesenchymal Stem Cells/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Lung/metabolism , Cytokines/metabolism , Lipopolysaccharides/adverse effects , Immunologic Factors , Inflammation/metabolism
7.
Aesthetic Plast Surg ; 46(5): 2500-2508, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34981156

ABSTRACT

BACKGROUND: The stromal vascular fraction (SVF) derived from adipose tissue contains heterogeneous cell populations and has enormous potential for clinical therapy. There are two main methods for SVF isolation: enzymatic isolation and mechanical isolation, both of which have shortcomings. In this study, optimized conditions for the isolation of high-quality SVF were established, and applications in fat grafting were evaluated. METHODS: Adipose tissue was chopped into small pieces and then ground into an erosive shape using a syringe. The pieces were digested with 0.15% type II collagenase for 35 min at 37 °C. After centrifugation, the pellets were resuspended in DMEM and passed through a 100-µm strainer. The filtered cells were analyzed by flow cytometry. The fat graft was enriched with isolated SVF and subcutaneously transplanted into nude mice. Three weeks after transplantation, grafts were isolated, and H&E staining, immunocytochemistry, and western blotting were conducted. RESULTS: The harvested SVF cells reached > 2 × 106/ml of adipose tissue within 90 min of operation. The number of CD34+ ADSCs in our SVF pellets was > 6 × 105/ml of adipose tissue, which has the potential for differentiating into osteoblasts, adipocytes, and chondrocytes. Freshly collected adipose tissue is better for SVF isolation, and isolated SVF should also be kept at 4 °C and used as soon as possible. SVF may promote revascularization after fat grafting. The adipose tissue of an SVF co-transplanted group had an integral structure, clear capillaries, and higher VEGF expression. SVF co-transplantation inhibited adipose cell apoptosis. CONCLUSION: Our study provides an efficient procedure for SVF isolation, its application in fat grafting, and possible underlying mechanisms. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Stromal Vascular Fraction , Vascular Endothelial Growth Factor A , Mice , Animals , Mice, Nude , Adipose Tissue/transplantation , Collagenases
8.
EMBO J ; 36(22): 3325-3335, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28963395

ABSTRACT

The Hippo pathway plays essential roles in organ size control and cancer prevention via restricting its downstream effector, Yes-associated protein (YAP). Previous studies have revealed an oncogenic function of YAP in reprogramming glucose metabolism, while the underlying mechanism remains to be fully clarified. Accumulating evidence suggests long noncoding RNAs (lncRNAs) as attractive therapeutic targets, given their roles in modulating various cancer-related signaling pathways. In this study, we report that lncRNA breast cancer anti-estrogen resistance 4 (BCAR4) is required for YAP-dependent glycolysis. Mechanistically, YAP promotes the expression of BCAR4, which subsequently coordinates the Hedgehog signaling to enhance the transcription of glycolysis activators HK2 and PFKFB3. Therapeutic delivery of locked nucleic acids (LNAs) targeting BCAR4 attenuated YAP-dependent glycolysis and tumor growth. The expression levels of BCAR4 and YAP are positively correlated in tissue samples from breast cancer patients, where high expression of both BCAR4 and YAP is associated with poor patient survival outcome. Taken together, our study not only reveals the mechanism by which YAP reprograms glucose metabolism, but also highlights the therapeutic potential of targeting YAP-BCAR4-glycolysis axis for breast cancer treatment.


Subject(s)
Glucose/metabolism , Hedgehog Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Base Sequence , Breast Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Female , Glycolysis/genetics , HEK293 Cells , Hexokinase/genetics , Hexokinase/metabolism , Humans , Models, Biological , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Transcription, Genetic , Treatment Outcome , Up-Regulation/genetics
10.
J Cell Physiol ; 234(9): 15235-15242, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30677139

ABSTRACT

Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.

11.
Hepatology ; 61(5): 1708-20, 2015 May.
Article in English | MEDLINE | ID: mdl-25501710

ABSTRACT

UNLABELLED: Liver fibrosis, a major cause of end-stage liver diseases, is closely regulated by multiple growth factors and cytokines. The correlation of fibroblast growth factor 2 (FGF2) with chronic liver injury has been reported, but the exact functions of different FGF2 isoforms in liver fibrogenesis remain unclear. Here, we report on the differential expression patterns and functions of low- and high-molecular-weight FGF2 (namely, FGF2(lmw) and FGF2(hmw) , respectively) in hepatic fibrogenesis using a CCl4 -induced mouse liver fibrosis model. FGF2(hmw) displayed a robust increase in CCl4 -induced hepatic fibrosis and promoted fibrogenesis. In contrast, endogenous FGF2(lmw) exhibited a slight increase in hepatic fibrosis and suppressed this pathological progression. Moreover, exogenous administration of recombinant FGF2(lmw) potently ameliorated CCl4 -induced liver fibrosis. Mechanistically, we showed that FGF2(lmw) treatment attenuated hepatic stellate cell activation and fibrosis by epigenetic down-regulation of Delta-like 1 expression through the p38 mitogen-activated protein kinase pathway. CONCLUSION: FGF2(lmw) and FGF2(hmw) have distinct roles in liver fibrogenesis. These findings demonstrate a potent antifibrotic effect of FGF2(lmw) administration, which may provide a novel approach to treat chronic liver diseases.


Subject(s)
Down-Regulation/drug effects , Epigenesis, Genetic/drug effects , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/therapeutic use , Intercellular Signaling Peptides and Proteins/physiology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Animals , Calcium-Binding Proteins , Fibroblast Growth Factor 2/physiology , Mice , Mice, Inbred C57BL , Molecular Weight
12.
Front Biosci (Landmark Ed) ; 29(6): 217, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38940047

ABSTRACT

BACKGROUND: Although umbilical cord mesenchymal stem cell (UCMSC) infusion has been proposed as a promising strategy for the treatment of acute lung injury (ALI), the parameters of UCMSC transplantation, such as infusion routes and doses, need to be further optimized. METHODS: In this study, we compared the therapeutic effects of UCMSCs transplanted via intravenous injection and intratracheal instillation on lipopolysaccharide-induced ALI using a rat model. Following transplantation, levels of inflammatory factors in serum; neutrophils, total white blood cells, and lymphocytes in bronchoalveolar lavage fluid (BALF); and lung damage levels were analyzed. RESULTS: The results indicated that UCMSCs administered via both intravenous and intratracheal routes were effective in alleviating ALI, as determined by analyses of arterial blood gas, lung histopathology, BALF contents, and levels of inflammatory factors. Comparatively, the intratracheal instillation of UCMSCs was found to result in lower levels of lymphocytes and total proteins in BALF, whereas greater reductions in the serum levels of tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were detected in rats receiving intravenously injected stem cells. CONCLUSIONS: Our findings in this study provide convincing evidence to indicate the efficacy of UCMSC therapy in the treatment of ALI mediated via different delivery routes, thereby providing a reliable theoretical basis for further clinical studies. Moreover, these findings imply that the effects obtained using the two assessed delivery routes for UCMSC transplantation are mediated via different mechanisms, which could be attributable to different cellular or molecular targets.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mesenchymal Stem Cell Transplantation , Rats, Sprague-Dawley , Umbilical Cord , Animals , Acute Lung Injury/therapy , Acute Lung Injury/chemically induced , Mesenchymal Stem Cell Transplantation/methods , Umbilical Cord/cytology , Rats , Male , Bronchoalveolar Lavage Fluid/cytology , Mesenchymal Stem Cells/cytology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Injections, Intravenous
13.
Front Biosci (Landmark Ed) ; 29(4): 139, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38682178

ABSTRACT

BACKGROUND: Hypoxic-ischaemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although hypothermia therapy offers some neuroprotection, the recovery of neurological function is limited. Therefore, new synergistic therapies are necessary to improve the prognosis. Mesenchymal stem cell-based therapy is emerging as a promising treatment option for HIE. In this study, we studied the therapeutic efficacy of human placenta-derived mesenchymal stem cells (PD-MSCs) in the HIE rat model and analyzed the underlying therapeutic mechanisms. METHODS: Rats were divided into 6 groups (n = 9 for each) as follows: control, HIE model, HIE + normal saline, and HIE + PD-MSC transplantation at days 7, 14 and 28 postpartum. Following PD-MSC transplantation, neurological behavior was evaluated using rotarod tests, traction tests, and the Morris water maze test. The degree of brain tissue damage was assessed by histological examination and Nissl staining. Expression levels of apoptosis-related proteins and inflammatory factors were quantified by Western blotting and enzyme-linked immunosorbent assays. Immunofluorescence was used to investigate the ability of PD-MSCs to repair the morphology and function of hippocampal neurons with hypoxic-ischaemic (HI) injury. RESULTS: PD-MSC transplantation enhanced motor coordination and muscle strength in HIE rats. This treatment also improved spatial memory ability by repairing pathological damage and preventing the loss of neurons in the cerebral cortex. The most effective treatment was observed in the HIE + PD-MSC transplantation at day 7 group. Expression levels of microtubule-associated protein-2 (MAP-2), B-cell lymphoma-2 (BCL-2), interleukin (IL)-10, and transforming growth factor (TGF -ß1) were significantly higher in the HIE + PD-MSC treatment groups compared to the HIE group, whereas the levels of BCL-2-associated X protein (BAX), BCL-2-associated agonist of cell death (BAD), IL-1ß and tumour necrosis factor α (TNF-α) were significantly lower. CONCLUSIONS: We demonstrated that intravenous injection of PD-MSC at 7, 14 and 28 days after intrauterine HI damage in a rat model could improve learning, memory, and motor function, possibly by inhibiting apoptosis and inflammatory damage. These findings indicate that autologous PD-MSC therapy could have potential application for the treatment of HIE.


Subject(s)
Apoptosis , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Placenta , Rats, Sprague-Dawley , Animals , Female , Mesenchymal Stem Cell Transplantation/methods , Pregnancy , Hypoxia-Ischemia, Brain/therapy , Humans , Placenta/cytology , Mesenchymal Stem Cells/cytology , Rats , Disease Models, Animal , Hippocampus/metabolism , Inflammation/therapy , Neurons/metabolism , Male
14.
Front Pharmacol ; 14: 1152612, 2023.
Article in English | MEDLINE | ID: mdl-37153763

ABSTRACT

Osteoarthritis (OA) is a kind of degenerative joint disease usually found in older adults and those who have received meniscal surgery, bringing great suffering to a number of patients worldwide. One of the major pathological features of OA is retrograde changes in the articular cartilage. Mesenchymal stromal cells (MSCs) can differentiate into chondrocytes and promote cartilage regeneration, thus having great potential for the treatment of osteoarthritis. However, improving the therapeutic effect of MSCs in the joint cavity is still an open problem. Hydrogel made of different biomaterials has been recognized as an ideal carrier for MSCs in recent years. This review focuses on the influence of the mechanical properties of hydrogels on the efficacy of MSCs in OA treatment and compares artificial materials with articular cartilage, hoping to provide a reference for further development of modified hydrogels to improve the therapeutic effect of MSCs.

15.
J Zhejiang Univ Sci B ; 24(12): 1151-1158, 2023 Dec 15.
Article in English, Zh | MEDLINE | ID: mdl-38057271

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a prevalent malignant tumor affecting the head and neck region (Leemans et al., 2018). It is often diagnosed at a later stage, leading to a poor prognosis (Muzaffar et al., 2021; Li et al., 2023). Despite advances in OSCC treatment, the overall 5-year survival rate of OSCC patients remains alarmingly low, falling below 50% (Jehn et al., 2019; Johnson et al., 2020). According to statistics, only 50% of patients with oral cancer can be treated with surgery. Once discovered, it is more frequently at an advanced stage. In addition, owing to the aggressively invasive and metastatic characteristics of OSCC, most patients die within one year of diagnosis. Hence, the pursuit of novel therapeutic drugs and treatments to improve the response of oral cancer to medication, along with a deeper understanding of their effects, remains crucial objectives in oral cancer research (Johnson et al., 2020; Bhat et al., 2021; Chen et al., 2023; Ruffin et al., 2023).


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Luteolin/therapeutic use , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/drug therapy , Cell Line, Tumor
16.
Environ Sci Pollut Res Int ; 30(16): 47780-47786, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36749513

ABSTRACT

Long-term exposure to diethylhexyl phthalate (DEHP), an endocrine-disrupting chemical (EDCs) and plasticizer widely used in consumer products, has been reported to be significantly positively correlated with increased risks of different human diseases, including various cancers, while the potential effect of DEHP on colorectal cancer progression was little studied. In the present study, we showed that DEHP could trigger the metabolic reprogramming of colorectal cancer cells, promote cell growth and decrease fluorouracil (5-FU) sensitivity. Mechanistic studies indicated that DEHP could reduce glycolysis activity and increase oxidative phosphorylation (OXPHOS) in SW620 cells. In addition, in vivo experiments showed that DEHP promoted tumorigenic progression and decreased survival time in mice. Collectively, our findings suggest that DEHP may be a potent risk factor for colorectal cancer development.


Subject(s)
Colorectal Neoplasms , Diethylhexyl Phthalate , Insulin Resistance , Mice , Humans , Animals , Diethylhexyl Phthalate/toxicity , Plasticizers/toxicity
17.
J Zhejiang Univ Sci B ; 24(1): 50-63, 2023 Jan 15.
Article in English, Zh | MEDLINE | ID: mdl-36632750

ABSTRACT

Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-|1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , tRNA Methyltransferases , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Hypoxia , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Signal Transduction/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
18.
Sci Rep ; 13(1): 14975, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697034

ABSTRACT

This study aims to investigate the effectiveness of umbilical cord mesenchymal stem cells (UCMSCs) in treating osteoarthritis (OA). Sprague-Dawley rats were used in in vivo experiments and divided into four groups: normal, OA model, saline, and UCMSC-treated groups (n = 6). An OA model was established by injecting iodoacetic acid into the joint cavity. The results indicate that UCMSC transplantation significantly reduced joint surface and articular cartilage damage, and the levels of IL-1ß, TNF-α, and MMP13 in the joint fluid were significantly reduced after UCMSC treatment. In vitro experiments showed that co-culturing UCMSCs and chondrocytes promoted the expression of aggrecan, COL2, SOX9, and BCL-2; downregulated the expression of BAX and BAD in chondrocytes; and promoted the expression of IL-10 and TGF-ß1 in UCMSCs. Additionally, the supernatant of UCMSCs inhibited the expression of IL-1ß and TNF-α in the articular cavity and promoted the expression of COL2 and aggrecan in vivo. These effects were impaired when IL-10 and TGF-ß1 were removed. Collectively, UCMSC transplantation appears to improve joint pathology, reduce inflammatory factors, and decrease chondrocyte apoptosis, likely through the involvement of IL-10 and TGF-ß1, thus providing a potential therapeutic option for patients with OA.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Rats , Animals , Rats, Sprague-Dawley , Chondrocytes , Interleukin-10 , Transforming Growth Factor beta1 , Aggrecans/genetics , Tumor Necrosis Factor-alpha , Osteoarthritis/therapy , Apoptosis
19.
Front Biosci (Landmark Ed) ; 28(4): 72, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37114535

ABSTRACT

BACKGROUND: Adipose tissue-derived stem cells (ADSCs), a type of mesenchymal stem cell, have been used extensively in clinical trials for the treatment of multiple conditions, including sepsis. However, increasing evidence indicates that ADSCs vanish from tissues within days of administration. Consequently, it would be desirable to establish the mechanisms underlying the fate of ADSCs following transplantation. METHODS: In this study, sepsis serum from mouse models was used to mimic microenvironmental effects. Healthy donor-derived human ADSCs were cultured in vitro in the presence of mouse serum from normal or lipopolysaccharide (LPS)-induced sepsis models for the purposes of discriminant analysis. The effects of sepsis serum on ADSC surface markers and cell differentiation were analyzed by flow cytometry, and the proliferation of ADSCs was assessed using a Cell Counting Kit-8 (CCK-8) assay. Quantitative real-time PCR (qRT-PCR) was applied to assess the degree of ADSC differentiation. The effects of sepsis serum on the cytokine release and migration of ADSCs were determined based on ELISA and Transwell assays, respectively, and ADSC senescence was assessed by ß-galactosidase staining and western blotting. Furthermore, we performed metabolic profiling to determine the rates of extracellular acidification and oxidative phosphorylation and the production of adenosine triphosphate and reactive oxygen species. RESULTS: We found that sepsis serum enhanced the cytokine and growth factor secretion and migratory capacities of ADSCs. Moreover, the metabolic pattern of these cells was reprogrammed to a more activated oxidative phosphorylation stage, leading to an increase in osteoblastic differentiation capacity and reductions in adipogenesis and chondrogenesis. CONCLUSIONS: Our findings in this study reveal that a septic microenvironment can regulate the fate of ADSCs.


Subject(s)
Adipose Tissue , Sepsis , Humans , Mice , Animals , Cell Proliferation , Stem Cells , Cell Differentiation/physiology , Cytokines , Cells, Cultured
20.
J Zhejiang Univ Sci B ; 24(3): 262-268, 2023 Mar 15.
Article in English, Zh | MEDLINE | ID: mdl-36916001

ABSTRACT

Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.


Subject(s)
Breast Neoplasms , Endometrial Neoplasms , Female , Humans , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Estrogens , DNA Helicases
SELECTION OF CITATIONS
SEARCH DETAIL