Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(50): e2310666120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048459

ABSTRACT

Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Autoantibodies , Complement C1q , Antigen-Antibody Complex , Complement Activation , Phagocytosis , Epitopes , Immunoglobulin G
2.
Mol Cell ; 63(1): 135-45, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27320199

ABSTRACT

The classical complement pathway contributes to the natural immune defense against pathogens and tumors. IgG antibodies can assemble at the cell surface into hexamers via Fc:Fc interactions, which recruit complement component C1q and induce complement activation. Biophysical characterization of the C1:IgG complex has remained elusive primarily due to the low affinity of IgG-C1q binding. Using IgG variants that dynamically form hexamers efficient in C1q binding and complement activation, we could assess C1q binding in solution by native mass spectrometry and size-exclusion chromatography. Fc-domain deglycosylation, described to abrogate complement activation, affected IgG hexamerization and C1q binding. Strikingly, antigen binding by IgG hexamers or deletion of the Fab arms substantially potentiated complement initiation, suggesting that Fab-mediated effects impact downstream Fc-mediated events. Finally, we characterized a reconstituted 2,045.3 ± 0.4-kDa complex of intact C1 bound to antigen-saturated IgG hexamer by native mass spectrometry, providing a clear visualization of a complete complement initiation complex.


Subject(s)
Antigens/metabolism , Complement Activation , Complement C1q/metabolism , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/metabolism , Antigen-Antibody Reactions , Antigens/chemistry , Antigens/immunology , Binding Sites, Antibody , Cell Line, Tumor , Chromatography, Gel , Complement C1q/chemistry , Complement C1q/immunology , Glycosylation , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mutation , Protein Binding , Protein Stability , Tandem Mass Spectrometry
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753489

ABSTRACT

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.


Subject(s)
Autoantibodies/immunology , Immunoglobulin G/immunology , Myasthenia Gravis/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Animals , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Autoantibodies/administration & dosage , Autoantibodies/genetics , Cell Line , Disease Models, Animal , Female , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Male , Mice , Myasthenia Gravis/pathology , Myoblasts , Neuromuscular Junction/immunology , Neuromuscular Junction/pathology , Phosphorylation/immunology , Receptor Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155115

ABSTRACT

Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.


Subject(s)
Cell Membrane/metabolism , Complement C1q/metabolism , Complement C1r/metabolism , Complement C1s/metabolism , Immunoglobulin G/metabolism , Complement Activation , Humans , Microscopy, Atomic Force , Mutation/genetics , Phagocytosis , Protein Binding , Protein Multimerization , Protein Stability , Staphylococcus aureus/immunology
5.
J Biol Chem ; 296: 100641, 2021.
Article in English | MEDLINE | ID: mdl-33839159

ABSTRACT

A bispecific antibody (BsAb) targeting the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) pathways represents a novel approach to overcome resistance to targeted therapies in patients with non-small cell lung cancer. In this study, we sequentially screened a panel of BsAbs in a combinatorial approach to select the optimal bispecific molecule. The BsAbs were derived from different EGFR and MET parental monoclonal antibodies. Initially, molecules were screened for EGFR and MET binding on tumor cell lines and lack of agonistic activity toward MET. Hits were identified and further screened based on their potential to induce untoward cell proliferation and cross-phosphorylation of EGFR by MET via receptor colocalization in the absence of ligand. After the final step, we selected the EGFR and MET arms for the lead BsAb and added low fucose Fc engineering to generate amivantamab (JNJ-61186372). The crystal structure of the anti-MET Fab of amivantamab bound to MET was solved, and the interaction between the two molecules in atomic details was elucidated. Amivantamab antagonized the hepatocyte growth factor (HGF)-induced signaling by binding to MET Sema domain and thereby blocking HGF ß-chain-Sema engagement. The amivantamab EGFR epitope was mapped to EGFR domain III and residues K443, K465, I467, and S468. Furthermore, amivantamab showed superior antitumor activity over small molecule EGFR and MET inhibitors in the HCC827-HGF in vivo model. Based on its unique mode of action, amivantamab may provide benefit to patients with malignancies associated with aberrant EGFR and MET signaling.


Subject(s)
Antibodies, Bispecific/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-met/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Nano Lett ; 19(7): 4787-4796, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31184907

ABSTRACT

IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.


Subject(s)
Complement Activation , Complement C1/chemistry , Immunoglobulin G/chemistry , Protein Multimerization , Complement C1/immunology , Humans , Immunoglobulin G/immunology
7.
Immunol Rev ; 270(1): 95-112, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26864107

ABSTRACT

CD38 is a multifunctional cell surface protein that has receptor as well as enzyme functions. The protein is generally expressed at low levels on various hematological and solid tissues, while plasma cells express particularly high levels of CD38. The protein is also expressed in a subset of hematological tumors, and shows especially broad and high expression levels in plasma cell tumors such as multiple myeloma (MM). Together, this triggered the development of various therapeutic CD38 antibodies, including daratumumab, isatuximab, and MOR202. Daratumumab binds a unique CD38 epitope and showed strong anti-tumor activity in preclinical models. The antibody engages diverse mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, modulation of enzymatic activity, and immunomodulatory activity. CD38-targeting antibodies have a favorable toxicity profile in patients, and early clinical data show a marked activity in MM, while studies in other hematological malignancies are ongoing. Daratumumab has single agent activity and a limited toxicity profile, allowing favorable combination therapies with existing as well as emerging therapies, which are currently evaluated in the clinic. Finally, CD38 antibodies may have a role in the treatment of diseases beyond hematological malignancies, including solid tumors and antibody-mediated autoimmune diseases.


Subject(s)
ADP-ribosyl Cyclase 1/antagonists & inhibitors , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Studies as Topic , Cytotoxicity, Immunologic , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/metabolism , Humans , Immunomodulation/drug effects , Protein Binding , Recurrence , Treatment Outcome
8.
Haematologica ; 104(9): 1841-1852, 2019 09.
Article in English | MEDLINE | ID: mdl-30792198

ABSTRACT

CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity. Complement-dependent cytotoxicity can be potentiated by introducing a single point mutation such as E430G in the IgG Fc domain that enhances intermolecular Fc-Fc interactions between cell-bound IgG molecules, thereby facilitating IgG hexamer formation. Antibodies specific for CD37, a target that is abundantly expressed on healthy and malignant B cells, are generally poor inducers of complement-dependent cytotoxicity. Here we demonstrate that introduction of the hexamerization-enhancing mutation E430G in CD37-specific antibodies facilitates highly potent complement-dependent cytotoxicity in chronic lymphocytic leukemia cells ex vivo Strikingly, we observed that combinations of hexamerization-enhanced CD20 and CD37 antibodies cooperated in C1q binding and induced superior and synergistic complement-dependent cytotoxicity in patient-derived cancer cells compared to the single agents. Furthermore, CD20 and CD37 antibodies colocalized on the cell membrane, an effect that was potentiated by the hexamerization-enhancing mutation. Moreover, upon cell surface binding, CD20 and CD37 antibodies were shown to form mixed hexameric antibody complexes consisting of both antibodies each bound to their own cognate target, so-called hetero-hexamers. These findings provide novel insights into the mechanisms of synergy in antibody-mediated complement-dependent cytotoxicity and provide a rationale to explore Fc-engineering and antibody hetero-hexamerization as a tool to enhance the cooperativity and therapeutic efficacy of antibody combinations.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antigens, CD20/immunology , Antigens, Neoplasm/immunology , Complement System Proteins/immunology , Immunoglobulin Fc Fragments/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Tetraspanins/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Line, Tumor , Complement C1q/immunology , Fluorescence Resonance Energy Transfer , Humans , Immunoglobulin G/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Mutation , Protein Binding , Rituximab/pharmacology
9.
PLoS Biol ; 14(1): e1002344, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26736041

ABSTRACT

IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Immunoglobulin G/metabolism , Immunotherapy/methods , Animals , Cell Line, Tumor , Complement Activation , Female , Humans , Immunoglobulin G/genetics , Mice, SCID , Mutation , Neoplasm Transplantation , Polymerization
10.
J Immunol ; 198(4): 1585-1594, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28062698

ABSTRACT

Triggering of the complement cascade induces tumor cell lysis via complement-dependent cytotoxicity (CDC) and attracts and activates cytotoxic cells. It therefore represents an attractive mechanism for mAb in cancer immunotherapy development. The classical complement pathway is initiated by IgG molecules that have assembled into ordered hexamers after binding their Ag on the tumor cell surface. The requirements for CDC are further impacted by factors such as Ab epitope, valency, and affinity. Thus, mAb against well-validated solid tumor targets, such as the epidermal growth factor receptor (EGFR) that effectively induces complement activation and CDC, are highly sought after. The potency of complement activation by IgG Abs can be increased via several strategies. We identified single-point mutations in the Fc domain (e.g., E345K or E430G) enhancing Fc:Fc interactions, hexamer formation, and CDC after Ab binds cell-surface Ag. We show that EGFR Abs directed against clinically relevant epitopes can be converted into mAb with unprecedented CDC activity. Alternative strategies rely on increasing the affinity of monomeric IgG for C1q by introduction of a quadruple mutation at the C1q binding site or via generation of an IgG1/IgG3 chimera. In this study we show that selective enhancement of C1q binding via avidity modulation is superior to the unattended increase in C1q binding via affinity approaches, particularly for target cells with reduced EGFR expression levels. Improving Fc:Fc interactions of Ag-bound IgG therefore represents a highly promising and novel approach for potentiating the anti-tumor activity of therapeutic mAb against EGFR and potentially other tumor targets.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Complement Activation , ErbB Receptors/immunology , Immunoglobulin G/immunology , Antibodies, Monoclonal/genetics , Binding Sites , Cell Line, Tumor , Complement C1q/immunology , Complement C1q/metabolism , ErbB Receptors/genetics , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Immunotherapy/methods , Mutation , Point Mutation
11.
J Immunol ; 197(3): 807-13, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27316683

ABSTRACT

Emerging evidence suggests that FcγR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce programmed cell death (PCD) of CD38(+) multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcγR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRγ-chain knockout or NOTAM mice carrying a signaling-inactive FcRγ-chain, we found that the inhibitory FcγRIIb as well as activating FcγRs induce DARA cross-linking-mediated PCD. In conclusion, our in vitro and in vivo data show that FcγR-mediated cross-linking of DARA induces PCD of CD38-expressing multiple myeloma tumor cells, which potentially contributes to the depth of response observed in DARA-treated patients and the drug's multifaceted mechanisms of action.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Multiple Myeloma/immunology , Receptors, IgG/immunology , ADP-ribosyl Cyclase 1 , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, IgG/drug effects , Tumor Cells, Cultured
12.
J Immunol ; 197(5): 1762-75, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27474078

ABSTRACT

Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation-enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Antigens, CD20/metabolism , Antigens/immunology , Binding Sites, Antibody , Complement C9/metabolism , Membrane Glycoproteins/metabolism , ADP-ribosyl Cyclase 1/immunology , Alemtuzumab , Antibodies, Monoclonal, Humanized/immunology , Antigens, CD20/immunology , B-Lymphocytes/immunology , Cell Line, Tumor , Complement Activation , Complement C3b/metabolism , Complement C9/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Humans , Membrane Glycoproteins/immunology
13.
J Immunol ; 197(12): 4829-4837, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27807190

ABSTRACT

Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20+ B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab')2 fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway. We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC, and thereby to the antitumor activity of such Abs in the clinic.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibody-Dependent Cell Cytotoxicity , Antigens, CD20/metabolism , B-Lymphocytes/drug effects , Complement Pathway, Classical , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/therapy , Rituximab/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antigens, CD20/immunology , B-Lymphocytes/immunology , Cell Line, Tumor , Complement C1/metabolism , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin M/genetics , Immunoglobulin M/metabolism , Lymphoma, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Rituximab/genetics , Rituximab/therapeutic use
14.
Clin Immunol ; 181: 24-28, 2017 08.
Article in English | MEDLINE | ID: mdl-28578024

ABSTRACT

We examined complement-dependent cytotoxicity (CDC) by hexamer formation-enhanced CD20 mAb Hx-7D8 of patient-derived chronic lymphocytic leukemia (CLL) cells that are relatively resistant to CDC. CDC was analyzed in normal human serum (NHS) and serum from an individual genetically deficient for C9. Hx-7D8 was able to kill up to 80% of CLL cells in complete absence of C9. We conclude that the narrow C5b-8 pores formed without C9 are sufficient for CDC due to efficient antibody-mediated hexamer formation. In the absence of C9, we observed transient intracellular increases of Ca2+ during CDC (as assessed with FLUO-4) that were extended in time. This suggests that small C5b-8 pores allow Ca2+ to enter the cell, while dissipation of the fluorescent signal accompanying cell disintegration is delayed. The Ca2+ signal is retained concomitantly with TOPRO-3 (viability dye) staining, thereby confirming that Ca2+ influx represents the most proximate mediator of cell death by CDC.


Subject(s)
Complement C9/deficiency , Complement System Proteins/immunology , Immunologic Deficiency Syndromes/immunology , Leukemia, Lymphocytic, Chronic, B-Cell , Rituximab/pharmacology , Calcium/metabolism , Cell Survival/drug effects , Complement C9/immunology , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Complement System Proteins/metabolism , Hereditary Complement Deficiency Diseases , Humans , Immunotherapy , Polymerization
15.
Anal Chem ; 89(9): 4793-4797, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28383250

ABSTRACT

The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray ionization (ESI)-mass spectrometry does not provide a direct solution as this approach is hindered by extensive interference of ion signals caused by closely spaced charge states of broadly distributed glycoforms. Here, we introduce a native tandem MS-based approach, enabling charge-state resolution and charge assignment of protein ions including those that escape mass analysis under standard MS conditions. Using this method, we determined the MW of two model glycoproteins, the extra-cellular domains of the highly and heterogeneously glycosylated proteins CD38 and epidermal growth factor receptor (EGFR), as well as the overall MW and binding stoichiometries of these proteins in complex with a specific antibody.


Subject(s)
ADP-ribosyl Cyclase 1/chemistry , ErbB Receptors/chemistry , Data Accuracy , Molecular Weight , Tandem Mass Spectrometry/methods
16.
Anal Chem ; 89(20): 10873-10882, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28922593

ABSTRACT

Bispecific antibodies (bsAbs) are one of the most versatile and promising pharmaceutical innovations for countering heterogeneous and refractory disease by virtue of their ability to bind two distinct antigens. One critical quality attribute of bsAb formation requiring investigation is the potential randomization of cognate heavy (H) chain/light (L) chain pairing, which could occur to a varying extent dependent on bsAb format and the production platform. To assess the content of such HL-chain swapped reaction products with high sensitivity, we developed cysteine-stable isotope labeling using amino acids in cell culture (SILAC), a method that facilitates the detailed characterization of disulfide-bridged peptides by mass spectrometry. For this analysis, an antibody was metabolically labeled with 13C3,15N-cysteine and incorporated into a comprehensive panel of distinct bispecific molecules by controlled Fab-arm exchange (DuoBody technology). This technology is a postproduction method for the generation of bispecific therapeutic IgGs of which several have progressed into the clinic. Herein, two parental antibodies, each containing a single heavy chain domain mutation, are mixed and subjected to controlled reducing conditions during which they exchange heavy-light (HL) chain pairs to form bsAbs. Subsequently, reductant is removed and all disulfide bridges are reoxidized to reform covalent inter- and intrachain bonds. We conducted a multilevel (Top-Middle-Bottom-Up) approach focusing on the characterization of both "left-arm" and "right-arm" HL interchain disulfide peptides and observed that native HL pairing was preserved in the whole panel of bsAbs produced by controlled Fab-arm exchange.


Subject(s)
Antibodies, Bispecific/chemistry , Cysteine/chemistry , Disulfides/analysis , Immunoglobulin G/chemistry , Tandem Mass Spectrometry , Antibodies, Bispecific/metabolism , Antigens, CD20/immunology , Carbon Isotopes/chemistry , Chromatography, High Pressure Liquid , ErbB Receptors/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/metabolism , Isotope Labeling , Nitrogen Isotopes/chemistry
17.
Haematologica ; 101(5): 616-25, 2016 05.
Article in English | MEDLINE | ID: mdl-26858358

ABSTRACT

Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Immunotherapy , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Animals , Cytokines/biosynthesis , Cytotoxicity, Immunologic , Disease Models, Animal , Flow Cytometry , Gene Expression , Gene Transfer Techniques , Genes, Transgenic, Suicide , Hematopoietic Stem Cells/metabolism , Humans , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/transplantation , Transduction, Genetic , Tumor Burden/genetics , Tumor Burden/immunology
18.
Proc Natl Acad Sci U S A ; 110(13): 5145-50, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23479652

ABSTRACT

The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.


Subject(s)
Antibodies, Bispecific/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Jurkat Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
19.
Anal Chem ; 87(12): 6095-102, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25978613

ABSTRACT

Native mass spectrometry is emerging as a powerful tool for the characterization of intact antibodies and antibody-based therapeutics. Here, we demonstrate new possibilities provided by the implementation of a high mass quadrupole mass selector on the recently introduced Orbitrap Exactive EMR mass spectrometer. This configuration allows precursor ion selection, and thus tandem mass spectrometry experiments, even on analytes with masses in the hundreds of kilodaltons. We apply tandem mass spectrometry to localize the drug molecules in the therapeutic antibody-drug conjugate brentuximab vedotin, which displays a heterogeneous drug load. Our tandem MS data reveal that drug conjugation takes place nonhomogeneously to cysteine residues both on the light and heavy chains. Next, we analyzed how many antigens bind to IgG hexamers, based on a recently described antibody mutant IgG1-RGY that forms hexamers and activates complement in solution. The fully saturated IgG1-RGY-antigen complexes displayed a stoichiometry of IgG:CD38 of 6:12, possessing a molecular weight of about 1.26 MDa and demonstrating that IgG assembly does not hamper antigen binding. Through tandem MS experiments, we retrieve information about the spatial arrangement and stoichiometry of the subunits within this complex. These examples underscore the potential of this further modified Orbitrap-EMR instrument especially for the in-depth characterization by native tandem mass spectrometry of antibodies and antibody-based constructs.


Subject(s)
ADP-ribosyl Cyclase 1/chemistry , Immunoconjugates/chemistry , Antigen-Antibody Reactions , Brentuximab Vedotin , Tandem Mass Spectrometry
20.
Haematologica ; 100(1): 77-86, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25344523

ABSTRACT

The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3-3 µM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 µM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity , Antigens, CD20/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, B-Cell/drug therapy , Purines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinazolinones/pharmacology , Adenine/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Blotting, Western , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Complement Activation/drug effects , Flow Cytometry , Fluorescent Antibody Technique , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/immunology , Phagocytosis/drug effects , Phagocytosis/immunology , Piperidines
SELECTION OF CITATIONS
SEARCH DETAIL