Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Oncologist ; 29(6): e843-e847, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38597608

ABSTRACT

For cancer clinical trials that require central confirmation of tumor genomic profiling, exhaustion of tissue from standard-of-care testing may prevent enrollment. For Lung-MAP, a master protocol that requires results from a defined centralized clinical trial assay to assign patients to a therapeutic substudy, we developed a process to repurpose existing commercial vendor raw genomic data for eligibility: genomic data reanalysis (GDR). Molecular results for substudy assignment were successfully generated for 369 of the first 374 patients (98.7%) using GDR for Lung-MAP, with a median time from request to result of 9 days. During the same period, 691 of 791 (87.4%) tissue samples received successfully yielded results, in a median of 14 days beyond sample acquisition. GDR is a scalable bioinformatic pipeline that expedites reanalysis of existing data for clinical trials in which validated integral biomarker testing is required for participation.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Genomics/methods
2.
Article in English | MEDLINE | ID: mdl-38872062

ABSTRACT

BACKGROUND: The treatment landscape for HR(+)HER2(-) metastatic breast cancer (MBC) is evolving for patients with ESR1 mutations (mut) and PI3K/AKT pathway genomic alterations (GA). We sought to inform clinical utility for comprehensive genomic profiling (CGP) using tissue (TBx) and liquid biopsies (LBx) in HR(+)HER2(-) MBC. METHODS: Records from a de-identified breast cancer clinicogenomic database for patients who underwent TBx/LBx testing at Foundation Medicine during routine clinical care at ~ 280 US cancer clinics between 01/2011 and 09/2023 were assessed. GA prevalence [ESR1mut, PIK3CAmut, AKT1mut, PTENmut, and PTEN homozygous copy loss (PTENloss)] were calculated in TBx and LBx [stratified by ctDNA tumor fraction (TF)] during the first three lines of therapy. Real-world progression-free survival (rwPFS) and overall survival (rwOS) were compared between groups by Cox models adjusted for prognostic factors. RESULTS: ~ 60% of cases harbored 1 + GA in 1st-line TBx (1266/2154) or LBx TF ≥ 1% (80/126) and 26.5% (43/162) in LBx TF < 1%. ESR1mut was found in 8.1% TBx, 17.5% LBx TF ≥ 1%, and 4.9% LBx TF < 1% in 1st line, increasing to 59% in 3rd line (LBx TF ≥ 1%). PTENloss was detected at higher rates in TBx (4.3%) than LBx (1% in TF ≥ 1%). Patients receiving 1st-line aromatase inhibitor + CDK4/6 inhibitor (n = 573) with ESR1mut had less favorable rwPFS and rwOS versus ESR1 wild-type; no differences were observed for fulvestrant + CDK4/6 inhibitor (n = 348). CONCLUSION: Our study suggests obtaining TBx for CGP at time of de novo/recurrent diagnosis, followed by LBx for detecting acquired GA in 2nd + lines. Reflex TBx should be considered when ctDNA TF < 1%.

3.
Proc Natl Acad Sci U S A ; 117(46): 29113-29122, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139574

ABSTRACT

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians' increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.


Subject(s)
Biological Evolution , Cerebral Cortex/physiology , Mammals/genetics , MicroRNAs/genetics , MicroRNAs/physiology , Animals , Corpus Callosum/physiology , Eutheria/genetics , Gene Expression Regulation, Developmental , Mice , Motor Cortex/pathology , Motor Neurons , Pyramidal Tracts/pathology
5.
Nat Chem Biol ; 12(1): 40-5, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26619249

ABSTRACT

The majority of bacterial proteins are dispensable for growth in the laboratory but nevertheless have important physiological roles. There are no systematic approaches to identify cell-permeable small-molecule inhibitors of these proteins. We demonstrate a strategy to identify such inhibitors that exploits synthetic lethal relationships both for small-molecule discovery and for target identification. Applying this strategy in Staphylococcus aureus, we have identified a compound that inhibits DltB, a component of the teichoic acid D-alanylation machinery that has been implicated in virulence. This D-alanylation inhibitor sensitizes S. aureus to aminoglycosides and cationic peptides and is lethal in combination with a wall teichoic acid inhibitor. We conclude that DltB is a druggable target in the D-alanylation pathway. More broadly, the work described demonstrates a systematic method to identify biologically active inhibitors of major bacterial processes that can be adapted to numerous organisms.


Subject(s)
Amsacrine/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Staphylococcus aureus/drug effects , Aminoglycosides/pharmacology , Amsacrine/chemistry , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/metabolism , High-Throughput Screening Assays/methods , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mutation , Small Molecule Libraries/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Teichoic Acids/metabolism
6.
Clin Cancer Res ; 30(11): 2452-2460, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38526394

ABSTRACT

PURPOSE: Liquid biopsy (LBx) for tumor profiling is increasingly used, but concerns remain regarding negative results. A lack of results may truly reflect tumor genomics, or it may be a false negative that would be clarified by tissue testing. A method of distinguishing between these scenarios could help clarify when follow-on tissue testing is valuable. EXPERIMENTAL DESIGN: Here we evaluate circulating tumor DNA (ctDNA) tumor fraction (TF), a quantification of ctDNA in LBx samples, for utility in identifying true negative results. We assessed concordance between LBx and tissue-based results, stratified by ctDNA TF, in a real-world genomic dataset of paired samples across multiple disease types. We also evaluated the frequency of tissue results identifying driver alterations in patients with lung cancer after negative LBx in a real-world clinicogenomic database. RESULTS: The positive percent agreement and negative predictive value between liquid and tissue samples for driver alterations increased from 63% and 66% for all samples to 98% and 97% in samples with ctDNA TF ≥1%. Among 505 patients with lung cancer with no targetable driver alterations found by LBx who had subsequent tissue-based profiling, 37% had a driver, all of which had ctDNA TF <1%. CONCLUSIONS: Patients with lung cancer with negative LBx and ctDNA TF ≥1% are unlikely to have a driver detected on confirmatory tissue testing; such informative negative results may benefit instead from prompt treatment initiation. Conversely, negative LBx with ctDNA TF <1% will commonly have a driver identified by follow-up tissue testing and should be prioritized for reflex testing.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Liquid Biopsy/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/pathology , Mutation , Genomics/methods , Female
7.
JCO Precis Oncol ; 8: e2300535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295321

ABSTRACT

PURPOSE: Studies have investigated the early use of liquid biopsy (LBx) during the diagnostic workup of patients presenting with clinical evidence of advanced lung cancer, but real-world adoption and impact has not been characterized. The aim of this study was to determine whether the use of LBx before diagnosis (Dx; LBx-Dx) enables timely comprehensive genomic profiling (CGP) and shortens time until treatment initiation for advanced non-small-cell lung cancer (aNSCLC). MATERIALS AND METHODS: This study used the Flatiron Health-Foundation Medicine electronic health record-derived deidentified clinicogenomic database of patients with aNSCLC from approximately 280 US cancer clinics. RESULTS: Of 1,076 patients with LBx CGP ordered within 30 days prediagnosis/postdiagnosis, we focused on 56 (5.2%) patients who ordered LBx before diagnosis date (median 8 days between order and diagnosis, range, 1-28). Compared with 1,020 patients who ordered LBx after diagnosis (Dx-LBx), LBx-Dx patients had similar stage and ctDNA tumor fraction (TF). LBx-Dx patients received CGP results a median of 1 day after Dx versus 25 days for Dx-LBx patients. Forty-three percent of LBx-Dx were positive for an National Comprehensive Cancer Network driver, and 32% had ctDNA TF >1% but were driver negative (presumed true negatives). In 748 patients with previously untreated aNSCLC, median time from Dx to therapy was shorter in the LBx-Dx versus Dx-LBx group (21 v 35 days; P < .001). CONCLUSION: Early LBx in anticipation of pathologic diagnosis of aNSCLC was uncommon in this real-world cohort, yet this emerging paradigm was associated with an abbreviated time to CGP results and faster therapy initiation. Forthcoming prospective studies will clarify the utility of LBx in parallel with biopsy for diagnostic confirmation for patients presenting with suspected advanced lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Prospective Studies , Liquid Biopsy , Time-to-Treatment
8.
Clin Cancer Res ; 30(4): 836-848, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38060240

ABSTRACT

PURPOSE: Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN: LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS: Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS: In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Male , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Circulating Tumor DNA/genetics , Genomics , Gene Fusion , Gene Rearrangement
9.
Clin Cancer Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990098

ABSTRACT

PURPOSE: Enzalutamide after abiraterone progression is commonly used in metastatic castration resistant prostate cancer (mCRPC) despite a low rate of clinical benefit. Analyzing IMbassador250, a phase III trial assessing enzalutamide with or without atezolizumab after abiraterone, we hypothesized that baseline and early changes in circulating tumor DNA (ctDNA) tumor fraction (TF) may identify patients more likely to exhibit survival benefit from enzalutamide. EXPERIMENTAL DESIGN: ctDNA was quantified from plasma samples using a tissue-agnostic assay without buffy coat sequencing. Baseline ctDNA TF, changes in ctDNA TF from baseline to cycle 3 day 1 (C3D1), and detection at C3D1 alone, were compared vs overall response rate (ORR), radiographic progression-free survival (rPFS), median OS (mOS), and 50% reduction in PSA. RESULTS: ctDNA TF detection at baseline and/or C3D1 was associated with shorter rPFS and OS in 494 evaluable patients. Detection of ctDNA TF at C3D1, with or without detection at C1D1, was associated with worse rPFS and mOS than lack of detection. When ctDNA TF and PSA response at C3D1 were discordant, patients with [ctDNA TF undetected/PSA not reduced] had more favorable outcomes than [ctDNA TF detected/PSA reduced] (mOS 22.1 months vs. 16 months, p<0.001). CONCLUSIONS: In a large cohort of mCRPC patients receiving enzalutamide after abiraterone, we demonstrate the utility of a new tissue-agnostic assay for monitoring molecular response based on ctDNA TF detection and dynamics. CtDNA TF provides a minimally-invasive, complementary biomarker to PSA testing and may refine personalized treatment approaches.

10.
Nat Chem Biol ; 8(1): 72-7, 2011 Nov 13.
Article in English | MEDLINE | ID: mdl-22082911

ABSTRACT

Glycosyltransferases (Gtfs) catalyze the formation of a diverse array of glycoconjugates. Small-molecule inhibitors to manipulate Gtf activity in cells have long been sought as tools for understanding Gtf function. Success has been limited because of challenges in designing inhibitors that mimic the negatively charged diphosphate substrates. Here we report the mechanism of action of a small molecule that inhibits O-linked N-acetylglucosamine transferase (OGT), an essential human enzyme that modulates cell signaling pathways by catalyzing a unique intracellular post-translational modification, ß-O-GlcNAcylation. The molecule contains a five-heteroatom dicarbamate core that functions as a neutral diphosphate mimic. One dicarbamate carbonyl reacts with an essential active site lysine that anchors the diphosphate of the nucleotide-sugar substrate. A nearby cysteine then reacts with the lysine adduct to form a carbonyl crosslink in the OGT active site. Though this unprecedented double-displacement mechanism reflects the unique architecture of the OGT active site, related dicarbamate scaffolds may inhibit other enzymes that bind nucleotide-containing substrates.


Subject(s)
Biomimetic Materials/metabolism , Catalytic Domain , Diphosphates/metabolism , N-Acetylglucosaminyltransferases/metabolism , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Biomimetic Materials/chemistry , Crystallography, X-Ray , Diphosphates/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , N-Acetylglucosaminyltransferases/antagonists & inhibitors
11.
Trends Pharmacol Sci ; 36(1): 3-5, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25557143

ABSTRACT

Too often, young students fail to translate their childhood curiosity into a passion for scientific discovery. The Journal of Emerging Investigators (JEI) aims to stimulate scientific curiosity in middle and high school students by providing them with an opportunity to publish their science projects in an open-access, peer-reviewed journal.


Subject(s)
Publishing , Students , Humans , Research , Research Personnel , Teaching
12.
Curr Opin Microbiol ; 16(5): 531-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23916223

ABSTRACT

The relentless spread of antibiotic-resistant pathogens makes it imperative to develop new chemotherapeutic strategies to overcome infection. The bacterial cell wall has served as a rich source for both validated and unexploited pathways that are essential for virulence and survival. Lipoteichoic acids (LTAs) and wall teichoic acids (WTAs) are cell wall polymers that play fundamental roles in Gram-positive bacterial physiology and pathogenesis, and both have been proposed as novel antibacterial targets. Here we describe recent progress toward the discovery of teichoic acid biosynthesis inhibitors and their potential as antibiotics to combat Staphylococcus aureus infections.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Biosynthetic Pathways/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Teichoic Acids/biosynthesis , Drug Discovery/methods , Drug Discovery/trends , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
13.
Integr Biol (Camb) ; 4(11): 1398-405, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23034677

ABSTRACT

While much is known about general controls over axon guidance of broad classes of projection neurons (those with long-distance axonal connections), molecular controls over specific axon targeting by distinct neuron subtypes are poorly understood. Corticospinal motor neurons (CSMN) are prototypical and clinically important cerebral cortex projection neurons; they are the brain neurons that degenerate in amyotrophic lateral sclerosis (ALS) and related motor neuron diseases, and their injury is central to the loss of motor function in spinal cord injury. Primary culture of purified immature murine CSMN has been recently established, using either fluorescence-activated cell sorting (FACS) or immunopanning, enabling a previously unattainable level of subtype-specific investigation, but the resulting number of CSMN is quite limiting for standard approaches to study axon guidance. We developed a microfluidic system specifically designed to investigate axon targeting of limited numbers of purified CSMN and other projection neurons in culture. The system contains two chambers for culturing target tissue explants, allowing for biologically revealing axonal growth "choice" experiments. This device will be uniquely enabling for investigation of controls over axon growth and neuronal survival of many types of neurons, particularly those available only in limited numbers.


Subject(s)
Axons/physiology , Microfluidic Analytical Techniques , Motor Neurons/physiology , Animals , Axons/ultrastructure , Cell Survival , Cells, Cultured , Cellular Microenvironment , Cerebral Cortex/cytology , Coculture Techniques , Equipment Design , Mice , Motor Neurons/classification , Motor Neurons/ultrastructure , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL