Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 128(10): 1451-1467, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33983831

ABSTRACT

In accordance with the comorbidity-inflammation paradigm, comorbidities and especially metabolic comorbidities are presumed to drive development and severity of heart failure with preserved ejection fraction through a cascade of events ranging from systemic inflammation to myocardial fibrosis. Recently, novel experimental and clinical evidence emerged, which strengthens the validity of the inflammatory/profibrotic paradigm. This evidence consists among others of (1) myocardial infiltration by immunocompetent cells not only because of an obesity-induced metabolic load but also because of an arterial hypertension-induced hemodynamic load. The latter is sensed by components of the extracellular matrix like basal laminin, which also interact with cardiomyocyte titin; (2) expression in cardiomyocytes of inducible nitric oxide synthase because of circulating proinflammatory cytokines. This results in myocardial accumulation of degraded proteins because of a failing unfolded protein response; (3) definition by machine learning algorithms of phenogroups of patients with heart failure with preserved ejection fraction with a distinct inflammatory/profibrotic signature; (4) direct coupling in mediation analysis between comorbidities, inflammatory biomarkers, and deranged myocardial structure/function with endothelial expression of adhesion molecules already apparent in early preclinical heart failure with preserved ejection fraction (HF stage A, B). This new evidence paves the road for future heart failure with preserved ejection fraction treatments such as biologicals directed against inflammatory cytokines, stimulation of protein ubiquitylation with phosphodiesterase 1 inhibitors, correction of titin stiffness through natriuretic peptide-particulate guanylyl cyclase-PDE9 (phosphodiesterase 9) signaling and molecular/cellular regulatory mechanisms that control myocardial fibrosis.


Subject(s)
Heart Failure/metabolism , Myocardium/metabolism , Biomarkers/metabolism , Collagen/metabolism , Comorbidity , Connectin/metabolism , Extracellular Matrix/physiology , Fibrosis , Heart Failure/etiology , Heart Failure/physiopathology , Heart Failure/therapy , Hemodynamics , Humans , Hypertension/physiopathology , Immunity, Cellular , Inflammation/physiopathology , Laminin/metabolism , Machine Learning , Myocardium/immunology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type II/metabolism , Obesity/metabolism , Stroke Volume/physiology
2.
Hum Brain Mapp ; 43(11): 3357-3374, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35415866

ABSTRACT

Persistent stuttering is a prevalent neurodevelopmental speech disorder, which presents with involuntary speech blocks, sound and syllable repetitions, and sound prolongations. Affected individuals often struggle with negative feelings, elevated anxiety, and low self-esteem. Neuroimaging studies frequently link persistent stuttering with cortical alterations and dysfunctional cortico-basal ganglia-thalamocortical loops; dMRI data also point toward connectivity changes of the superior longitudinal fasciculus (SLF) and the frontal aslant tract (FAT). Both tracts are involved in speech and language functions, and the FAT also supports inhibitory control and conflict monitoring. Whether the two tracts are involved in therapy-associated improvements and how they relate to therapeutic outcomes is currently unknown. Here, we analyzed dMRI data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 27 fluent control participants, measured 1 year apart. We used diffusion tractography to segment the SLF and FAT bilaterally and to quantify their microstructural properties before and after a fluency-shaping program. Participants learned to speak with soft articulation, pitch, and voicing during a 2-week on-site boot camp and computer-assisted biofeedback-based daily training for 1 year. Therapy had no impact on the microstructural properties of the two tracts. Yet, after therapy, stuttering severity correlated positively with left SLF fractional anisotropy, whereas relief from the social-emotional burden to stutter correlated negatively with right FAT fractional anisotropy. Thus, posttreatment, speech motor performance relates to the left dorsal stream, while the experience of the adverse impact of stuttering relates to the structure recently associated with conflict monitoring and action inhibition.


Subject(s)
Stuttering , White Matter , Diffusion Tensor Imaging/methods , Humans , Nerve Net , Speech/physiology , Stuttering/diagnostic imaging , Stuttering/therapy , White Matter/diagnostic imaging
3.
Heart Fail Rev ; 27(1): 207-218, 2022 01.
Article in English | MEDLINE | ID: mdl-32488580

ABSTRACT

This study aimed to evaluate the diagnostic performance of echocardiographic markers of heart failure with preserved ejection fraction (HFpEF) and left ventricular diastolic dysfunction (LVDD) in comparison with the gold standard of cardiac catheterization. Diagnosing HFpEF is challenging, as symptoms are non-specific and often absent at rest. A clear need exists for sensitive echocardiographic markers to diagnose HFpEF. We systematically searched for studies testing the diagnostic value of novel echocardiographic markers for HFpEF and LVDD. Two investigators independently reviewed the studies and assessed the risk of bias. Results were meta-analysed when four or more studies reported a similar diagnostic measure. Of 353 studies, 20 fulfilled the eligibility criteria. The risk of bias was high especially in the patients' selection domain. The highest diagnostic performance was demonstrated by a multivariable model combining echocardiographic, clinical and arterial function markers with an area under the curve of 0.95 (95% CI, 0.89-0.98). A meta-analysis of four studies indicated a reasonable diagnostic performance for left atrial strain with an AUC of 0.83 (0.70-0.95), a specificity of 93% (95% CI, 90-97%) and a sensitivity of 77% (95% CI, 59-96%). Moreover, the addition of exercise E/e' improved the sensitivity of HFpEF diagnostic algorithms up to 90%, compared with 60 and 34% of guidelines alone. Despite the heterogeneity of the included studies, this review supported the current multivariable-based approach for the diagnosis of HFpEF and LVDD and showed a potential diagnostic role for exercise echocardiography and left atrial strain. Larger well-designed studies are needed to evaluate the incremental value of novel diagnostic tools to current diagnostic algorithms.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Echocardiography , Heart Failure/diagnostic imaging , Humans , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left
4.
Circulation ; 142(18): 1770-1780, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33136513

ABSTRACT

There is a lack of consensus on how we define heart failure with preserved ejection fraction (HFpEF), with wide variation in diagnostic criteria across society guidelines. This lack of uniformity in disease definition stems in part from an incomplete understanding of disease pathobiology, phenotypic heterogeneity, and natural history. We review current knowledge gaps and existing diagnostic tools and algorithms. We present a simple approach to implement these tools within the constraints of the current knowledge base, addressing separately (1) hospitalized individuals with rest congestion, where diagnosis is more straightforward; and (2) individuals with exercise intolerance, where diagnosis is more complex. Here, a potential role for advanced or provocative testing, including evaluation of hemodynamic responses to exercise is considered. More importantly, we propose focus areas for future studies to develop accurate and feasible diagnostic tools for HFpEF, including animal models that recapitulate human HFpEF, and human studies that both address a fundamental understanding of HFpEF pathobiology, and new diagnostic approaches and tools, as well. In sum, there is an urgent need to more accurately define the syndrome of HFpEF to inform diagnosis, patient selection for clinical trials, and, ultimately, future therapeutic approaches.


Subject(s)
Algorithms , Heart Failure/diagnosis , Heart Failure/physiopathology , Heart Failure/therapy , Stroke Volume , Humans
5.
Neuroimage ; 245: 118736, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34798230

ABSTRACT

Fluency-shaping enhances the speech fluency of persons who stutter, yet underlying conditions and neuroplasticity-related mechanisms are largely unknown. While speech production-related brain activity in stuttering is well studied, it is unclear whether therapy repairs networks of altered sensorimotor integration, imprecise neural timing and sequencing, faulty error monitoring, or insufficient speech planning. Here, we tested the impact of one-year fluency-shaping therapy on resting-state fMRI connectivity within sets of brain regions subserving these speech functions. We analyzed resting-state data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 28 fluent control participants, measured one year apart. Improved fluency was accompanied by an increased connectivity within the sensorimotor integration network. Specifically, two connections were strengthened; the left inferior frontal gyrus showed increased connectivity with the precentral gyrus at the representation of the left laryngeal motor cortex, and the left inferior frontal gyrus showed increased connectivity with the right superior temporal gyrus. Thus, therapy-associated neural remediation was based on a strengthened integration of the command-to-execution pathway together with an increased auditory-to-motor coupling. Since we investigated task-free brain activity, we assume that our findings are not biased to network activity involved in compensation but represent long-term focal neuroplasticity effects.


Subject(s)
Auditory Pathways/physiopathology , Brain Mapping/methods , Efferent Pathways/physiopathology , Magnetic Resonance Imaging , Neuronal Plasticity , Stuttering/physiopathology , Adult , Female , Germany , Humans , Image Interpretation, Computer-Assisted , Male , Severity of Illness Index , Stuttering/therapy
6.
Eur J Neurosci ; 53(10): 3404-3415, 2021 05.
Article in English | MEDLINE | ID: mdl-33754397

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is an increasingly used, non-invasive brain stimulation technique in neuroscience research and clinical practice with a broad spectrum of suggested applications. Among other parameters, the choice of stimulus intensity and intracranial electric field strength substantially impacts rTMS outcome. This review provides a systematic overview of the intensity selection approaches and stimulation intensities used in human rTMS studies. We also examined whether studies report sufficient information to reproduce stimulus intensities for basic science research models. We performed a systematic review by focusing on original studies published between 1991 and 2020. We included conventional (e.g., 1 or 10 Hz) and patterned protocols (e.g., continuous or intermittent theta burst stimulation). We identified 3,784 articles in total, and we manually processed a representative portion (20%) of randomly selected articles. The majority of the analyzed studies (90% of entries) used the motor threshold (MT) approach and stimulation intensities from 80% to 120% of the MT. For continuous and intermittent theta burst stimulation, the most frequent stimulation intensity was 80% of the active MT. Most studies (92% of entries) did not report sufficient information to reproduce the stimulation intensity. Only a minority of studies (1.03% of entries) estimated the rTMS-induced electric field strengths. We formulate easy-to-follow recommendations to help scientists and clinicians report relevant information on stimulation intensity. Future standardized reporting guidelines may facilitate the use of basic science approaches aiming at better understanding the molecular, cellular, and neuronal mechanisms of rTMS.


Subject(s)
Brain , Transcranial Magnetic Stimulation , Humans , Research Design
7.
Ann Neurol ; 87(2): 184-193, 2020 02.
Article in English | MEDLINE | ID: mdl-31788832

ABSTRACT

OBJECTIVE: Restless legs syndrome is a frequent neurological disorder with substantial burden on individual well-being and public health. Genetic risk loci have been identified, but the causatives genes at these loci are largely unknown, so that functional investigation and clinical translation of molecular research data are still inhibited. To identify putatively causative genes, we searched for highly significant mutational burden in candidate genes. METHODS: We analyzed 84 candidate genes in 4,649 patients and 4,982 controls by next generation sequencing using molecular inversion probes that targeted mainly coding regions. The burden of low-frequency and rare variants was assessed, and in addition, an algorithm (binomial performance deviation analysis) was established to estimate independently the sequence variation in the probe binding regions from the variation in sequencing depth. RESULTS: Highly significant results (considering the number of genes in the genome) of the conventional burden test and the binomial performance deviation analysis overlapped significantly. Fourteen genes were highly significant by one method and confirmed with Bonferroni-corrected significance by the other to show a differential burden of low-frequency and rare variants in restless legs syndrome. Nine of them (AAGAB, ATP2C1, CNTN4, COL6A6, CRBN, GLO1, NTNG1, STEAP4, VAV3) resided in the vicinity of known restless legs syndrome loci, whereas 5 (BBS7, CADM1, CREB5, NRG3, SUN1) have not previously been associated with restless legs syndrome. Burden test and binomial performance deviation analysis also converged significantly in fine-mapping potentially causative domains within these genes. INTERPRETATION: Differential burden with intragenic low-frequency variants reveals putatively causative genes in restless legs syndrome. ANN NEUROL 2020;87:184-193.


Subject(s)
DNA Mutational Analysis , Genetic Predisposition to Disease/genetics , Restless Legs Syndrome/genetics , Case-Control Studies , Chromosome Mapping/statistics & numerical data , Female , Humans , Male , Middle Aged
8.
Int J Neuropsychopharmacol ; 24(6): 490-498, 2021 07 14.
Article in English | MEDLINE | ID: mdl-33617635

ABSTRACT

BACKGROUND: Noradrenaline has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (Stroop interference task), and working memory performance (n-back letter task). METHODS: The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine or placebo administration. RESULTS: The results show that motor learning, attentional processes, and working memory performance in healthy participants were improved by reboxetine application compared with placebo. CONCLUSIONS: The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes are in line with related effects of noradrenaline on cortical excitability and plasticity.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Attention/drug effects , Learning/drug effects , Memory, Short-Term/drug effects , Motor Activity/drug effects , Nootropic Agents/pharmacology , Norepinephrine , Reboxetine/pharmacology , Adrenergic Uptake Inhibitors/administration & dosage , Adult , Cross-Over Studies , Female , Humans , Male , Nootropic Agents/administration & dosage , Reboxetine/administration & dosage , Young Adult
9.
Am J Med Genet A ; 185(12): 3838-3843, 2021 12.
Article in English | MEDLINE | ID: mdl-34327820

ABSTRACT

Pathogenic variants in HECW2 are extremely rare. So far, only 19 cases have been reported. They were associated with epilepsy, intellectual disability, absent language, hypotonia, and autism. As these cases were all de novo mutations, mostly presenting without identical variants, variable expressivity has never been investigated. Here, we describe the first family with the same novel variant in HECW2. A 19-year old female patient presented with bursts of generalized spike-wave discharges and intellectual disability. We performed next-generation-sequencing, to detect the genetic cause. Next-generation-sequencing revealed a novel likely pathogenic variant in HECW2 (c.3571C>T; p.Arg1191Trp) in the index patient, her mother and brother. They showed some similar phenotypic patterns with intellectual disability, hypotonia and generalized epileptiform patterns. However, the mother was less severely affected and epileptiform patterns were less frequent. The brother presented with additional autistic features. In contrast to previous cases, the speech of all individuals was only mildly impaired. This is the first case report of a family with the same novel likely pathogenic variant in HECW2 and as such provides insight into the phenotypic variability of this mutation. The expressivity of symptoms may be so mild that genetic and EEG analysis are needed to disclose the correct diagnosis.


Subject(s)
Epilepsy/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Epilepsy/pathology , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/pathology , Male , Middle Aged , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Mutation , Mutation, Missense/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Young Adult
10.
PLoS Biol ; 16(4): e2005867, 2018 04.
Article in English | MEDLINE | ID: mdl-29672569

ABSTRACT

The ability to simultaneously process and maintain multiple pieces of information is limited. Over the past 50 years, observational methods have provided a large amount of insight regarding the neural mechanisms that underpin the mental capacity that we refer to as "working memory." More than 20 years ago, a neural coding scheme was proposed for working memory. As a result of technological developments, we can now not only observe but can also influence brain rhythms in humans. Building on these novel developments, we have begun to externally control brain oscillations in order to extend the limits of working memory.


Subject(s)
Brain , Memory, Short-Term , Humans
11.
Nature ; 519(7544): 472-6, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25799991

ABSTRACT

Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Cardiomegaly/enzymology , Cardiomegaly/metabolism , Cyclic GMP/metabolism , Nitric Oxide , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/deficiency , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Animals , Aortic Valve Stenosis/complications , Cardiomegaly/drug therapy , Cardiomegaly/etiology , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Cells/enzymology , Myocardium/enzymology , Natriuretic Peptides/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Pressure , Signal Transduction/drug effects , Stress, Physiological , Up-Regulation
12.
Hum Brain Mapp ; 41(6): 1644-1666, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31860160

ABSTRACT

Transcranial direct current stimulation (tDCS) induces polarity- and dose-dependent neuroplastic aftereffects on cortical excitability and cortical activity, as demonstrated by transcranial magnetic stimulation (TMS) and functional imaging (fMRI) studies. However, lacking systematic comparative studies between stimulation-induced changes in cortical excitability obtained from TMS, and cortical neurovascular activity obtained from fMRI, prevent the extrapolation of respective physiological and mechanistic bases. We investigated polarity- and intensity-dependent effects of tDCS on cerebral blood flow (CBF) using resting-state arterial spin labeling (ASL-MRI), and compared the respective changes to TMS-induced cortical excitability (amplitudes of motor evoked potentials, MEP) in separate sessions within the same subjects (n = 29). Fifteen minutes of sham, 0.5, 1.0, 1.5, and 2.0-mA anodal or cathodal tDCS was applied over the left primary motor cortex (M1) in a randomized repeated-measure design. Time-course changes were measured before, during and intermittently up to 120-min after stimulation. ROI analyses indicated linear intensity- and polarity-dependent tDCS after-effects: all anodal-M1 intensities increased CBF under the M1 electrode, with 2.0-mA increasing CBF the greatest (15.3%) compared to sham, while all cathodal-M1 intensities decreased left M1 CBF from baseline, with 2.0-mA decreasing the greatest (-9.3%) from sham after 120-min. The spatial distribution of perfusion changes correlated with the predicted electric field, as simulated with finite element modeling. Moreover, tDCS-induced excitability changes correlated more strongly with perfusion changes in the left sensorimotor region compared to the targeted hand-knob region. Our findings reveal lasting tDCS-induced alterations in cerebral perfusion, which are dose-dependent with tDCS parameters, but only partially account for excitability changes.


Subject(s)
Magnetic Resonance Imaging/methods , Transcranial Direct Current Stimulation , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebrovascular Circulation , Electrodes , Electromagnetic Fields , Evoked Potentials, Motor , Female , Humans , Male , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Neuronal Plasticity/physiology , Online Systems , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology , Spin Labels , Young Adult
13.
Biomarkers ; 25(2): 201-211, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32063068

ABSTRACT

Background: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome for which clear evidence of effective therapies is lacking. Understanding which factors determine this heterogeneity may be helped by better phenotyping. An unsupervised statistical approach applied to a large set of biomarkers may identify distinct HFpEF phenotypes.Methods: Relevant proteomic biomarkers were analyzed in 392 HFpEF patients included in Metabolic Road to Diastolic HF (MEDIA-DHF). We performed an unsupervised cluster analysis to define distinct phenotypes. Cluster characteristics were explored with logistic regression. The association between clusters and 1-year cardiovascular (CV) death and/or CV hospitalization was studied using Cox regression.Results: Based on 415 biomarkers, we identified 2 distinct clusters. Clinical variables associated with cluster 2 were diabetes, impaired renal function, loop diuretics and/or betablockers. In addition, 17 biomarkers were higher expressed in cluster 2 vs. 1. Patients in cluster 2 vs. those in 1 experienced higher rates of CV death/CV hospitalization (adj. HR 1.93, 95% CI 1.12-3.32, p = 0.017). Complex-network analyses linked these biomarkers to immune system activation, signal transduction cascades, cell interactions and metabolism.Conclusion: Unsupervised machine-learning algorithms applied to a wide range of biomarkers identified 2 HFpEF clusters with different CV phenotypes and outcomes. The identified pathways may provide a basis for future research.Clinical significanceMore insight is obtained in the mechanisms related to poor outcome in HFpEF patients since it was demonstrated that biomarkers associated with the high-risk cluster were related to the immune system, signal transduction cascades, cell interactions and metabolismBiomarkers (and pathways) identified in this study may help select high-risk HFpEF patients which could be helpful for the inclusion/exclusion of patients in future trials.Our findings may be the basis of investigating therapies specifically targeting these pathways and the potential use of corresponding markers potentially identifying patients with distinct mechanistic bioprofiles most likely to respond to the selected mechanistically targeted therapies.


Subject(s)
Heart Failure/physiopathology , Phenotype , Aged , Biomarkers/analysis , Cluster Analysis , Female , Humans , Machine Learning , Male , Middle Aged , Proteomics , Stroke Volume
14.
Eur Heart J ; 40(40): 3297-3317, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31504452

ABSTRACT

Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.


Subject(s)
Algorithms , Cardiology/organization & administration , Clinical Decision-Making , Heart Failure, Diastolic/diagnosis , Aged , Consensus , Echocardiography , Female , Heart Failure, Diastolic/etiology , Heart Failure, Diastolic/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Natriuretic Peptides/blood , Practice Guidelines as Topic
15.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Article in English | MEDLINE | ID: mdl-31669609

ABSTRACT

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Subject(s)
Diastole , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Inflammation/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Prediabetic State/pathology , Prediabetic State/physiopathology , Actin Cytoskeleton/metabolism , Animals , Connectin/metabolism , Cytokines/metabolism , Disease Models, Animal , Guanylate Cyclase/metabolism , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hydrogen Peroxide/metabolism , Male , Multienzyme Complexes/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myosins/metabolism , NADH, NADPH Oxidoreductases/metabolism , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type III/metabolism , Peptides/metabolism , Phosphorylation , Rats, Wistar , Superoxides/metabolism , Vasodilation/drug effects
16.
J Physiol ; 597(2): 599-609, 2019 01.
Article in English | MEDLINE | ID: mdl-30430565

ABSTRACT

KEY POINTS: Restless legs patients complain about sensory and motor symptoms leading to sleep disturbances. Symptoms include painful sensations, an urge to move and involuntary leg movements. The responsible mechanisms of restless legs syndrome are still not known, although current studies indicate an increased neuronal network excitability. Reflex studies indicate the involvement of spinal structures. Peripheral mechanisms have not been investigated so far. In the present study, we provide evidence of increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated inward rectification in motor axons. The excitability of sensory axons was not changed. We conclude that, in restless legs syndrome, an increased HCN current in motoneurons may play a pathophysiological role, such that these channels could represent a valuable target for pharmaceutical intervention. ABSTRACT: Restless legs syndrome is a sensorimotor network disorder. So far, the responsible pathophysiological mechanisms are poorly understood. In the present study, we provide evidence that the excitability of peripheral motoneurons contributes to the pathophysiology of restless legs syndrome. In vivo excitability studies on motor and sensory axons of the median nerve were performed on patients with idiopathic restless legs syndrome (iRLS) who were not currently on treatment. The iRLS patients had greater accommodation in motor but not sensory axons to long-lasting hyperpolarization compared to age-matched healthy subjects, indicating greater inward rectification in iRLS. The most reasonable explanation is that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open at less hyperpolarized membrane potentials, a view supported by mathematical modelling. The half-activation potential for HCN channels (Bq) was the single best parameter that accounted for the difference between normal controls and iRLS data. A 6 mV depolarization of Bq reduced the discrepancy between the normal control model and the iRLS data by 92.1%. Taken together, our results suggest an increase in the excitability of motor units in iRLS that could enhance the likelihood of leg movements. The abnormal axonal properties are consistent with other findings indicating that the peripheral system is part of the network involved in iRLS.


Subject(s)
Motor Neurons/physiology , Restless Legs Syndrome/physiopathology , Adult , Aged , Axons/physiology , Female , Humans , Male , Median Nerve/physiology , Membrane Potentials , Middle Aged
17.
Eur J Neurosci ; 50(8): 3261-3268, 2019 10.
Article in English | MEDLINE | ID: mdl-30888090

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that is frequently used to study cortical excitability changes and their impact on cognitive functions in humans. While most stimulators are capable of operating in double-blind mode, the amount of discomfort experienced during tDCS may break blinding. Therefore, specifically designed sham stimulation protocols are being used. The "fade-in, short-stimulation, fade-out" (FSF) protocol has been used in hundreds of studies and is commonly believed to be indistinguishable from real stimulation applied at 1 mA for 20 min. We analysed subjective reports of 192 volunteers, who either received real tDCS (n = 96) or FSF tDCS (n = 96). Participants reported more discomfort for real tDCS and correctly guessed the condition above chance-level. These findings indicate that FSF does not ensure complete blinding and that better active sham protocols are needed.


Subject(s)
Awareness , Transcranial Direct Current Stimulation/adverse effects , Double-Blind Method , Female , Humans , Male , Pain , Perception , Transcranial Direct Current Stimulation/methods , Young Adult
18.
Brain ; 141(1): 191-204, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29228195

ABSTRACT

A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering.


Subject(s)
Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Functional Laterality/physiology , Neural Pathways/diagnostic imaging , Stuttering/pathology , Adult , Anisotropy , Case-Control Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Stuttering/diagnostic imaging , Young Adult
19.
Neural Plast ; 2019: 6747049, 2019.
Article in English | MEDLINE | ID: mdl-31360162

ABSTRACT

Behavioral response conflict arises in the color-word Stroop task and triggers the cognitive control network. Midfrontal theta-band oscillations correlate with adaptive control mechanisms during and after conflict resolution. In order to prove causality, in two experiments, we applied transcranial alternating current stimulation (tACS) at 6 Hz to the dorsolateral prefrontal cortex (DLPFC) during Stroop task performance. Sham stimulation served as a control in both experiments; 9.7 Hz tACS served as a nonharmonic alpha band control in the second experiment. We employed generalized linear mixed models for analysis of behavioral data. Accuracy remained unchanged by any type of active stimulation. Over both experiments, the Stroop effect (response time difference between congruent and incongruent trials) was reduced by 6 Hz stimulation as compared to sham, mainly in trials without prior conflict adaptation. Alpha tACS did not modify the Stroop effect. Theta tACS can both reduce the Stroop effect and modulate adaptive mechanisms of the cognitive control network, suggesting midfrontal theta oscillations as causally involved in cognitive control.


Subject(s)
Conflict, Psychological , Prefrontal Cortex/physiology , Stroop Test , Theta Rhythm/physiology , Transcranial Direct Current Stimulation/methods , Adult , Double-Blind Method , Female , Humans , Male , Young Adult
20.
J Physiol ; 596(22): 5429-5441, 2018 11.
Article in English | MEDLINE | ID: mdl-30218585

ABSTRACT

KEY POINTS: Nicotine (NIC) modulates cognition and memory function by targeting the nicotinic ACh receptor and releasing different transmitter systems postsynaptically. With both NIC-generated mechanisms, calcium influx and calcium permeability can be regulated, which is a key requirement for the induction of long-term potentiation, comprising the physiological basis of learning and memory function. We attempt to unmask the underlying mechanism of nicotinic effects on anodal transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity based on the hypothesis of calcium-dependency. Abolished tDCS-induced neuroplasticity as a result of NIC administration is reversed by calcium channel blockade with flunarizine in a dose-dependent manner. The results of the present study suggest that there is a dose determination of NIC/NIC agonists in therapeutical settings when treating cognitive dysfunction, which partially explains the heterogeneous results on cognition observed in subjects in different experimental settings. ABSTRACT: Nicotine (NIC) modulates neuroplasticity and improves cognitive performance in animals and humans mainly by increased calcium permeability and modulation of diverse transmitter systems. NIC administration impairs calcium-dependent plasticity induced by non-invasive brain stimulation with transcranial direct current stimulation (tDCS) in non-smoking participants probably as a result of intracellular calcium overflow. To test this hypothesis, we analysed the effect of calcium channel blockade with flunarizine (FLU) on anodal tDCS-induced cortical excitability changes in healthy non-smokers under NIC. We applied anodal tDCS combined with NIC patch and FLU at three different doses (2.5, 5 and 10 mg) or with placebo medication. NIC abolished anodal tDCS-induced neuroplasticity. Under medium dosage (but not under low and high dosage) of FLU combined with NIC, plasticity was re-established. For FLU alone, the lowest dosage weakened long-term potentiation (LTP)-like plasticity, whereas the highest dosage again abolished tDCS-induced plasticity. The medium dosage turned LTP-like plasticity in long-term depression-like plasticity. The results of the present study suggest a key role of calcium influx and calcium levels in nicotinic effects on LTP-like plasticity in humans. This knowledge might be relevant for the development of new therapeutic strategies in cognitive dysfunction.


Subject(s)
Calcium/metabolism , Evoked Potentials, Motor/drug effects , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Nicotine/pharmacology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Neuronal Plasticity/physiology , Nicotinic Agonists/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL