Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417860

ABSTRACT

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Diapause , Drug Resistance, Neoplasm , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Clone Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genetic Heterogeneity/drug effects , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Mice, Inbred NOD , Mice, SCID , Models, Biological , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
2.
Nat Immunol ; 23(8): 1273-1283, 2022 08.
Article in English | MEDLINE | ID: mdl-35835962

ABSTRACT

Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.


Subject(s)
Interferon Type I , Humans , Immunotherapy , Inflammation , T-Lymphocytes
3.
Immunity ; 55(2): 324-340.e8, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35139353

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.


Subject(s)
Immune Tolerance/immunology , Receptors, Aryl Hydrocarbon/immunology , Tryptophan/immunology , Tumor-Associated Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Humans , Indoles/immunology , Indoles/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Microbiota/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism
4.
Cell ; 162(5): 961-73, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317465

ABSTRACT

DNA-demethylating agents have shown clinical anti-tumor efficacy via an unknown mechanism of action. Using a combination of experimental and bioinformatics analyses in colorectal cancer cells, we demonstrate that low-dose 5-AZA-CdR targets colorectal cancer-initiating cells (CICs) by inducing viral mimicry. This is associated with induction of dsRNAs derived at least in part from endogenous retroviral elements, activation of the MDA5/MAVS RNA recognition pathway, and downstream activation of IRF7. Indeed, disruption of virus recognition pathways, by individually knocking down MDA5, MAVS, or IRF7, inhibits the ability of 5-AZA-CdR to target colorectal CICs and significantly decreases 5-AZA-CdR long-term growth effects. Moreover, transfection of dsRNA into CICs can mimic the effects of 5-AZA-CdR. Together, our results represent a major shift in understanding the anti-tumor mechanisms of DNA-demethylating agents and highlight the MDA5/MAVS/IRF7 pathway as a potentially druggable target against CICs.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/analogs & derivatives , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Azacitidine/pharmacology , Cells, Cultured , DEAD-box RNA Helicases/metabolism , DNA Methylation/drug effects , Decitabine , Endogenous Retroviruses/metabolism , Humans , Interferon Regulatory Factor-7/metabolism , Interferon-Induced Helicase, IFIH1 , Mice , RNA, Double-Stranded/metabolism , Receptors, Retinoic Acid/metabolism , Signal Transduction
5.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980975

ABSTRACT

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genes, Neoplasm , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Exome , Female , Genome-Wide Association Study , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Mutation Rate
6.
Am J Hum Genet ; 110(10): 1616-1627, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37802042

ABSTRACT

At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.


Subject(s)
Cell-Free Nucleic Acids , Neoplastic Syndromes, Hereditary , Female , Humans , Genetic Predisposition to Disease , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/epidemiology , Genetic Testing/methods , Liquid Biopsy , Cell-Free Nucleic Acids/genetics
7.
Proc Natl Acad Sci U S A ; 120(9): e2210836120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36821580

ABSTRACT

Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Mesothelioma, Malignant/metabolism , Mesothelioma, Malignant/pathology , Tumor-Associated Macrophages/pathology , Macrophages/metabolism , Mesothelioma/metabolism , Monocytes/pathology , Tumor Microenvironment , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
8.
Trends Immunol ; 43(5): 379-390, 2022 05.
Article in English | MEDLINE | ID: mdl-35379580

ABSTRACT

The cancer research community continues to search for additional biomarkers of response and resistance to immune checkpoint treatment (ICT). The ultimate goal is to direct the use of ICT in patients whose tumors are most likely to benefit to achieve a refinement that is equivalent to that of a genotype-matched targeted treatment. Dissecting the mechanisms of ICT resistance can help us characterize ICT nonresponders more efficiently. In this opinion, we argue that there may be additional knowledge gained about immune evasion in cancer by analyzing the loss of the human 9p21.3 locus; as an example, we highlight findings of 9p21.3 loss from the investigator-initiated, pan-cancer INSPIRE study, in which patients were treated with pembrolizumab (anti-PD-1 antibody) ICT.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy
9.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37402621

ABSTRACT

SUMMARY: Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) has emerged as a promising liquid biopsy technology to detect cancers and monitor treatments. While several bioinformatics tools for DNA methylation analysis have been adapted for cfMeDIP-seq data, an end-to-end pipeline and quality control framework specifically for this data type is still lacking. Here, we present the MEDIPIPE, which provides a one-stop solution for cfMeDIP-seq data quality control, methylation quantification, and sample aggregation. The major advantages of MEDIPIPE are: (i) ease of implementation and reproducibility with Snakemake containerized execution environments that will be automatically deployed via Conda; (ii) flexibility to handle different experimental settings with a single configuration file; and (iii) computationally efficiency for large-scale cfMeDIP-seq profiling data analysis and aggregation. AVAILABILITY AND IMPLEMENTATION: This pipeline is an open-source software under the MIT license and it is freely available at https://github.com/pughlab/MEDIPIPE.


Subject(s)
Cell-Free Nucleic Acids , Software , Reproducibility of Results , High-Throughput Nucleotide Sequencing , Immunoprecipitation , Quality Control
10.
Nature ; 563(7732): 579-583, 2018 11.
Article in English | MEDLINE | ID: mdl-30429608

ABSTRACT

The use of liquid biopsies for cancer detection and management is rapidly gaining prominence1. Current methods for the detection of circulating tumour DNA involve sequencing somatic mutations using cell-free DNA, but the sensitivity of these methods may be low among patients with early-stage cancer given the limited number of recurrent mutations2-5. By contrast, large-scale epigenetic alterations-which are tissue- and cancer-type specific-are not similarly constrained6 and therefore potentially have greater ability to detect and classify cancers in patients with early-stage disease. Here we develop a sensitive, immunoprecipitation-based protocol to analyse the methylome of small quantities of circulating cell-free DNA, and demonstrate the ability to detect large-scale DNA methylation changes that are enriched for tumour-specific patterns. We also demonstrate robust performance in cancer detection and classification across an extensive collection of plasma samples from several tumour types. This work sets the stage to establish biomarkers for the minimally invasive detection, interception and classification of early-stage cancers based on plasma cell-free DNA methylation patterns.


Subject(s)
Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/metabolism , DNA Methylation , DNA, Neoplasm/blood , DNA, Neoplasm/metabolism , Early Detection of Cancer/methods , Neoplasms/classification , Neoplasms/genetics , Adenocarcinoma/blood , Adenocarcinoma/genetics , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , DNA Mutational Analysis , Epigenesis, Genetic , Female , Heterografts , Humans , Liquid Biopsy , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplasms/blood , Organ Specificity , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics
11.
Nature ; 559(7714): 400-404, 2018 07.
Article in English | MEDLINE | ID: mdl-29988082

ABSTRACT

The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)4-8. Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.


Subject(s)
Genetic Predisposition to Disease , Health , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Age Factors , Aged , Disease Progression , Electronic Health Records , Female , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Models, Genetic , Mutagenesis , Prevalence , Risk Assessment
12.
Hum Genet ; 142(2): 181-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331656

ABSTRACT

Rapid advancements of genome sequencing (GS) technologies have enhanced our understanding of the relationship between genes and human disease. To incorporate genomic information into the practice of medicine, new processes for the analysis, reporting, and communication of GS data are needed. Blood samples were collected from adults with a PCR-confirmed SARS-CoV-2 (COVID-19) diagnosis (target N = 1500). GS was performed. Data were filtered and analyzed using custom pipelines and gene panels. We developed unique patient-facing materials, including an online intake survey, group counseling presentation, and consultation letters in addition to a comprehensive GS report. The final report includes results generated from GS data: (1) monogenic disease risks; (2) carrier status; (3) pharmacogenomic variants; (4) polygenic risk scores for common conditions; (5) HLA genotype; (6) genetic ancestry; (7) blood group; and, (8) COVID-19 viral lineage. Participants complete pre-test genetic counseling and confirm preferences for secondary findings before receiving results. Counseling and referrals are initiated for clinically significant findings. We developed a genetic counseling, reporting, and return of results framework that integrates GS information across multiple areas of human health, presenting possibilities for the clinical application of comprehensive GS data in healthy individuals.


Subject(s)
COVID-19 , Genetic Counseling , Adult , Humans , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Genomics/methods , Genotype
13.
Nature ; 547(7661): 55-60, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28658208

ABSTRACT

Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Mutation , Promoter Regions, Genetic/genetics , Cohort Studies , E2F Transcription Factors/metabolism , Exome/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , High-Throughput Nucleotide Sequencing , Humans , Protein Binding/genetics , RNA, Long Noncoding/genetics , Receptors, Estrogen/antagonists & inhibitors
14.
Nature ; 549(7671): 227-232, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28854171

ABSTRACT

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Tracking , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation , Clone Cells/drug effects , Clone Cells/pathology , Epigenesis, Genetic , Female , Glioblastoma/drug therapy , Heterografts , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Phenotype , Stochastic Processes
15.
Int J Gynecol Cancer ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940339

ABSTRACT

OBJECTIVES: Abnormalities in mismatch repair have been described in ovarian cancer, but few studies have examined the causes of mismatch repair deficiency (MMRd). To address this, we completed targeted mutational and methylation sequencing on MMRd ovarian cancer cases. The objective of this study was to explore the molecular mechanism of MMRd using our targeted next generation sequencing panel. METHODS: Newly diagnosed non-serous/mucinous ovarian cancers (n=215) were prospectively recruited from three cancer centers in Ontario, Canada, between 2015 and 2018. Tumors were reflexively assessed for mismatch repair protein by immunohistochemistry. Matched tumor-normal MMRd cases were analyzed on a custom next generation sequencing panel to identify germline and somatic mutations, copy number variants, rearrangements, and promoter methylation in mismatch repair and associated genes. RESULTS: Of 215 cases, 28 (13%) were MMRd. The MMRd cohort had a median age of 52.3 years (range 33.6-62.2), with mostly stage I (50%) and grade 1 or 2 endometrioid histotype (57%). Of the 28 cases, 22 were available for molecular analysis, and Lynch syndrome was detected in 50% of MMRd cases (11/22; seven ovarian cancer and four synchronous ovarian and endometrial cancer: seven MSH6, two MLH1, one PMS2, and one MSH2). An explanation for the observed mismatch repair phenotype was available for 22/22 deficient cases, including 12 MLH1/PMS2 deficient (nine somatic methylation, one bi-allelic somatic deletion, and two pathogenic germline variant), one PMS2 deficient (one pathogenic germline variant), seven MSH6 deficient (seven pathogenic germline variant), and two MSH2/MSH6 deficient (one pathogenic germline variant and one bi-allelic somatic mutation). Concordance between clinical germline testing and panel sequencing results was 100%. CONCLUSIONS: Use of our custom next generation sequencing panel allowed for the streamlined assessment of hereditary and somatic causes of MMRd in ovarian cancers.

16.
Lancet ; 397(10271): 281-292, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33485453

ABSTRACT

BACKGROUND: The Wee1 (WEE1hu) inhibitor adavosertib and gemcitabine have shown preclinical synergy and promising activity in early phase clinical trials. We aimed to determine the efficacy of this combination in patients with ovarian cancer. METHODS: In this double-blind, randomised, placebo-controlled, phase 2 trial, women with measurable recurrent platinum-resistant or platinum-refractory high-grade serous ovarian cancer were recruited from 11 academic centres in the USA and Canada. Women were eligible if they were aged 18 years or older, had an Eastern Cooperative Oncology Group performance status of 0-2, a life expectancy of more than 3 months, and normal organ and marrow function. Women with ovarian cancer of non-high-grade serous histology were eligible for enrolment in a non-randomised exploratory cohort. Eligible participants with high-grade serous ovarian cancer were randomly assigned (2:1), using block randomisation (block size of three and six) and no stratification, to receive intravenous gemcitabine (1000 mg/m2 on days 1, 8, and 15) with either oral adavosertib (175 mg) or identical placebo once daily on days 1, 2, 8, 9, 15, and 16, in 28-day cycles until disease progression or unacceptable toxicity. Patients and the team caring for each patient were masked to treatment assignment. The primary endpoint was progression-free survival. The safety and efficacy analysis population comprised all patients who received at least one dose of treatment. The trial is registered with ClinicalTrials.gov, NCT02151292, and is closed to accrual. FINDINGS: Between Sept 22, 2014, and May 30, 2018, 124 women were enrolled, of whom 99 had high-grade serous ovarian cancer and were randomly assigned to adavosertib plus gemcitabine (65 [66%]) or placebo plus gemcitabine (34 [34%]). 25 women with non-high-grade serous ovarian cancer were enrolled in the exploratory cohort. After randomisation, five patients with high-grade serous ovarian cancer were found to be ineligible (four in the experimental group and one in the control group) and did not receive treatment. Median age for all treated patients (n=119) was 62 years (IQR 54-67). Progression-free survival was longer with adavosertib plus gemcitabine (median 4·6 months [95% CI 3·6-6·4] with adavosertib plus gemcitabine vs 3·0 months [1·8-3·8] with placebo plus gemcitabine; hazard ratio 0·55 [95% CI 0·35-0·90]; log-rank p=0·015). The most frequent grade 3 or worse adverse events were haematological (neutropenia in 38 [62%] of 61 participants in the adavosertib plus gemcitabine group vs ten [30%] of 33 in the placebo plus gemcitabine group; thrombocytopenia in 19 [31%] of 61 in the adavosertib plus gemcitabine group vs two [6%] of 33 in the placebo plus gemcitabine group). There were no treatment-related deaths; two patients (one in each group in the high-grade serous ovarian cancer cohort) died while on study medication (from sepsis in the experimental group and from disease progression in the control group). INTERPRETATION: The observed clinical efficacy of a Wee1 inhibitor combined with gemcitabine supports ongoing assessment of DNA damage response drugs in high-grade serous ovarian cancer, a TP53-mutated tumour type with high replication stress. This therapeutic approach might be applicable to other tumour types with high replication stress; larger confirmatory studies are required. FUNDING: US National Cancer Institute Cancer Therapy Evaluation Program, Ontario Institute for Cancer Research, US Department of Defense, Princess Margaret Cancer Foundation, and AstraZeneca.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Deoxycytidine/analogs & derivatives , Enzyme Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Pyrazoles/therapeutic use , Pyrimidinones/therapeutic use , Canada , Deoxycytidine/therapeutic use , Double-Blind Method , Female , Humans , Middle Aged , Ovarian Neoplasms/pathology , Survival , United States , Gemcitabine
17.
Oncologist ; 27(5): e393-e401, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35385106

ABSTRACT

BACKGROUND: We explored health professionals' views on the utility of circulating tumor DNA (ctDNA) testing in hereditary cancer syndrome (HCS) management. MATERIALS AND METHODS: A qualitative interpretive description study was conducted, using semi-structured interviews with professionals across Canada. Thematic analysis employing constant comparison was used for analysis. 2 investigators coded each transcript. Differences were reconciled through discussion and the codebook was modified as new codes and themes emerged from the data. RESULTS: Thirty-five professionals participated and included genetic counselors (n = 12), geneticists (n = 9), oncologists (n = 4), family doctors (n = 3), lab directors and scientists (n = 3), a health-system decision maker, a surgeon, a pathologist, and a nurse. Professionals described ctDNA as "transformative" and a "game-changer". However, they were divided on its use in HCS management, with some being optimistic (optimists) while others were hesitant (pessimists). Differences were driven by views on 3 factors: (1) clinical utility, (2) ctDNA's role in cancer screening, and (3) ctDNA's invasiveness. Optimists anticipated ctDNA testing would have clinical utility for HCS patients, its role would be akin to a diagnostic test and would be less invasive than standard screening (eg imaging). Pessimistic participants felt ctDNA testing would add limited utility; it would effectively be another screening test in the pathway, likely triggering additional investigations downstream, thereby increasing invasiveness. CONCLUSIONS: Providers anticipated ctDNA testing will transform early cancer detection for HCS families. However, the contrasting positions on ctDNA's role in the care pathway raise potential practice variations, highlighting a need to develop evidence to support clinical implementation and guidelines to standardize adoption.


Subject(s)
Circulating Tumor DNA , Neoplastic Syndromes, Hereditary , Circulating Tumor DNA/genetics , Early Detection of Cancer/methods , Health Personnel , Humans , Qualitative Research
18.
Genome Res ; 29(8): 1211-1222, 2019 08.
Article in English | MEDLINE | ID: mdl-31249064

ABSTRACT

We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276 We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.


Subject(s)
Brain Neoplasms/genetics , Chromatin/ultrastructure , Chromosome Mapping/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Neoplasm Proteins/genetics , B7 Antigens/antagonists & inhibitors , B7 Antigens/genetics , B7 Antigens/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Chromatin/chemistry , Enhancer Elements, Genetic , Gene Expression Profiling , Genetic Heterogeneity , Genome, Human , Genomics/methods , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Targeted Therapy , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic
19.
Am J Hematol ; 97(12): 1538-1547, 2022 12.
Article in English | MEDLINE | ID: mdl-36087071

ABSTRACT

Autologous stem cell transplantation (ASCT) remains a key therapeutic strategy for treating patients with relapsed or refractory non-Hodgkin and Hodgkin lymphoma. Clonal hematopoiesis (CH) has been proposed as a major contributor not only to the development of therapy-related myeloid neoplasms but also to inferior overall survival (OS) in patients who had undergone ASCT. Herein, we aimed to investigate the prognostic implications of CH after ASCT in a cohort of 420 lymphoma patients using ultra-deep, highly sensitive error-correction sequencing. CH was identified in the stem cell product samples of 181 patients (43.1%) and was most common in those with T-cell lymphoma (72.2%). The presence of CH was associated with a longer time to neutrophil and platelet recovery. Moreover, patients with evidence of CH had inferior 5-year OS from the time of first relapse (39.4% vs. 45.8%, p = .043) and from the time of ASCT (51.8% vs. 59.3%, p = .018). The adverse prognostic impact of CH was not due to therapy-related myeloid neoplasms, the incidence of which was low in our cohort (10-year cumulative incidence of 3.3% vs. 3.0% in those with and without CH, p = .445). In terms of specific-gene mutations, adverse OS was mostly associated with PPM1D mutations (hazard ratio (HR) 1.74, 95% confidence interval (CI) 1.13-2.67, p = .011). In summary, we found that CH is associated with an increased risk of non-lymphoma-related death after ASCT, which suggests that lymphoma survivors with CH may need intensified surveillance strategies to prevent and treat late complications.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Lymphoma , Neoplasms, Second Primary , Humans , Transplantation, Autologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Clonal Hematopoiesis , Lymphoma/therapy , Lymphoma/complications , Hodgkin Disease/complications , Neoplasms, Second Primary/therapy , Neoplasms, Second Primary/genetics , Stem Cell Transplantation/adverse effects , Retrospective Studies
20.
Int J Gynecol Cancer ; 32(7): 891-898, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35012974

ABSTRACT

OBJECTIVES: While ovarian cancer is the third most common Lynch syndrome-associated cancer in women, there is no established screening strategy to identify Lynch syndrome in this population. The objective of this study was to assess whether the 4-item brief Family History Questionnaire can be used as a screening tool to identify women with ovarian cancer at risk of Lynch syndrome. METHODS: In this prospective cohort study, participants with newly diagnosed non-serous, non-mucinous ovarian cancer completed the brief Family History Questionnaire, extended Family History Questionnaire, and had tumors assessed with immunohistochemistry for mismatch repair proteins, MLH1 methylation, and microsatellite instability testing. All underwent universal germline testing for Lynch syndrome. Performance characteristics were compared between the brief Family History Questionnaire, extended Family History Questionnaire, immunohistochemistry±MLH1 methylation, and microsatellite instability testing. RESULTS: Of 215 participants, 169 (79%) were evaluable with both the brief Family History Questionnaire and germline mutation status; 12 of these 169 were confirmed to have Lynch syndrome (7%). 10 of 12 patients (83%) with Lynch syndrome were correctly identified by the brief Family History Questionnaire, compared with 6 of 11 (55%) by the extended Family History Questionnaire, 11 of 13 (85%) by immunohistochemistry±MLH1 methylation, and 9 of 11 (82%) by microsatellite instability testing. The sensitivity, specificity, positive predictive values, and negative predictive values of the brief Family History Questionnaire were 83%, 65%, 15%, and 98%, respectively. A combined approach with immunohistochemistry and the brief Family History Questionnaire correctly identified all 12 patients with Lynch syndrome. The brief Family History Questionnaire was more sensitive than the extended Family History Questionnaire and took <10 min for each patient to complete. CONCLUSIONS: The brief Family History Questionnaire alone or combined with immunohistochemistry may serve as an adequate screening strategy, especially in centers without access to universal tumor testing.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Endometrial Neoplasms , Ovarian Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Endometrial Neoplasms/pathology , Female , Germ-Line Mutation , Humans , Mass Screening , Microsatellite Instability , MutL Protein Homolog 1/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL