Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 140(5): 652-65, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211135

ABSTRACT

MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA's seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/metabolism , Animals , Blast Crisis , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Proto-Oncogene Proteins c-pim-1/metabolism , RNA-Induced Silencing Complex/metabolism
2.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35995507

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Cell Differentiation , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Monocytes/metabolism , Transcription Factor AP-1/metabolism
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108786

ABSTRACT

Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.


Subject(s)
Arthritis, Rheumatoid , Receptors, IgG , Humans , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Monocytes/metabolism , Receptors, IgG/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nerve Tissue Proteins/metabolism
4.
J Immunol ; 204(7): 1988-1997, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32094205

ABSTRACT

TLRs, a family of membrane-bound pattern recognition receptors found on innate immune cells, have been well studied in the context of cancer therapy. Activation of these receptors has been shown to induce inflammatory anticancer events, including differentiation and apoptosis, across a wide variety of malignancies. In contrast, intracellular pattern recognition receptors such as NOD-like receptors have been minimally studied. NOD2 is a member of the NOD-like receptor family that initiates inflammatory signaling in response to the bacterial motif muramyl dipeptide. In this study, we examined the influence of NOD2 in human acute myeloid leukemia (AML) cells, demonstrating that IFN-γ treatment upregulated the expression of NOD2 signaling pathway members SLC15A3 and SLC15A4, downstream signaling kinase RIPK2, and the NOD2 receptor itself. This priming allowed for effective induction of caspase-1-dependent cell death upon treatment with muramyl tripeptide phosphatidylethanolamine (MTP-PE), a synthetic ligand for NOD2. Furthermore, the combination of MTP-PE and IFN-γ on AML blasts generated an inflammatory cytokine profile and activated NK cells. In a murine model of AML, dual treatment with MTP-PE and IFN-γ led to a significant increase in mature CD27- CD11b+ NK cells as well as a significant reduction in disease burden and extended survival. These results suggest that NOD2 activation, primed by IFN-γ, may provide a novel therapeutic option for AML.


Subject(s)
Apoptosis/physiology , Leukemia, Myeloid, Acute/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
5.
J Immunol ; 203(12): 3216-3224, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31732534

ABSTRACT

Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.


Subject(s)
Monocytes/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, IgG/metabolism , Antigen-Antibody Complex/immunology , Blood Donors , Cytokines/metabolism , Down-Regulation , Gene Knockdown Techniques , Humans , Immunoglobulin G/metabolism , Phagocytosis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , RNA, Small Interfering/genetics , Signal Transduction/immunology
6.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29868798

ABSTRACT

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Tretinoin/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Therapy, Combination , Humans , Leukemia, Myeloid, Acute/pathology , Tretinoin/chemistry , Tretinoin/therapeutic use , Tumor Cells, Cultured
7.
J Biol Chem ; 291(49): 25656-25666, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27780867

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytotoxins/pharmacology , Interferon-gamma/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Animals , Cell Line, Tumor , Female , Granzymes/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/metabolism , Receptors, IgG/metabolism , Xenograft Model Antitumor Assays
8.
Blood ; 125(17): 2689-92, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25716206

ABSTRACT

The prognosis of acute myeloid leukemia (AML) is poor, highlighting the need for novel treatments. Hypomethylating agents, including decitabine are used to treat elderly AML patients with relative success. Targeting nuclear export receptor (exportin 1 [XPO1]) is a novel approach to restore tumor suppressor (TS) function in AML. Here, we show that sequential treatment of AML blasts with decitabine followed by selinexor (XPO1 inhibitor) enhances the antileukemic effects of selinexor. These effects could be mediated by the re-expression of a subset of TSs (CDKN1A and FOXO3A) that are epigenetically silenced via DNA methylation, and cytoplasmic-nuclear trafficking is regulated by XPO1. We observed a significant upregulation of CDKN1A and FOXO3A in decitabine- versus control-treated cells. Sequential treatment of decitabine followed by selinexor in an MV4-11 xenograft model significantly improved survival compared with selinexor alone. On the basis of these preclinical results, a phase 1 clinical trial of decitabine followed by selinexor in elderly patients with AML has been initiated.


Subject(s)
Antineoplastic Agents/therapeutic use , Azacitidine/analogs & derivatives , Hydrazines/therapeutic use , Karyopherins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/therapeutic use , Active Transport, Cell Nucleus/drug effects , Animals , Azacitidine/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Methylation/drug effects , DNA Modification Methylases/antagonists & inhibitors , Decitabine , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Humans , Karyopherins/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects , Exportin 1 Protein
9.
PLoS Genet ; 9(3): e1003311, 2013.
Article in English | MEDLINE | ID: mdl-23505378

ABSTRACT

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Subject(s)
Breast Neoplasms , Early Growth Response Protein 1 , Estrogen Receptor alpha , MicroRNAs , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Blood ; 122(11): 1923-34, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23926298

ABSTRACT

FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs.


Subject(s)
Janus Kinase 2/metabolism , Leukemia/drug therapy , Propylene Glycols/pharmacology , Protein Phosphatase 2/metabolism , Sphingosine/analogs & derivatives , Animals , Cell Line, Transformed , Cell Line, Tumor , Cells, Cultured , Class Ib Phosphatidylinositol 3-Kinase , DNA-Binding Proteins , Enzyme Activation/drug effects , Fingolimod Hydrochloride , Histone Chaperones , Humans , Immunoblotting , Immunosuppressive Agents/pharmacology , Janus Kinase 2/genetics , Kaplan-Meier Estimate , Leukemia/genetics , Leukemia/pathology , Mice , Mice, SCID , Mutation , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Phosphatase 2/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Sphingosine/pharmacology , Treatment Outcome
11.
Blood ; 122(17): 3034-44, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-23970380

ABSTRACT

As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1(+) leukemias. Using CD34(+) progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph(+) B-ALL. Notably, XPO1 was also elevated in Ph(-) B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34(+) progenitors, and increased survival of BCR-ABL1(+) mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph(+) leukemias.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Hydrazines/pharmacology , Karyopherins/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/pharmacology , Adult , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , DNA-Binding Proteins , Drug Evaluation, Preclinical , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/genetics , Histone Chaperones/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Transport , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Ribonucleoproteins/antagonists & inhibitors , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Exportin 1 Protein
12.
Blood ; 121(1): 159-69, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23100311

ABSTRACT

Recently, we showed that increased miR-181a expression was associated with improved outcomes in cytogenetically normal acute myeloid leukemia (CN-AML). Interestingly, miR-181a expression was increased in CN-AML patients harboring CEBPA mutations, which are usually biallelic and associate with better prognosis. CEBPA encodes the C/EBPα transcription factor. We demonstrate here that the presence of N-terminal CEBPA mutations and miR-181a expression are linked. Indeed, the truncated C/EBPα-p30 isoform, which is produced from the N-terminal mutant CEBPA gene or from the differential translation of wild-type CEBPA mRNA and is commonly believed to have no transactivation activity, binds to the miR-181a-1 promoter and up-regulates the microRNA expression. Furthermore, we show that lenalidomide, a drug approved for myelodysplastic syndromes and multiple myeloma, enhances translation of the C/EBPα-p30 isoform, resulting in higher miR-181a levels. In xenograft mouse models, ectopic miR-181a expression inhibits tumor growth. Similarly, lenalidomide exhibits antitumorigenic activity paralleled by increased miR-181a expression. This regulatory pathway may explain an increased sensitivity to apoptosis-inducing chemotherapy in subsets of AML patients. Altogether, our data provide a potential explanation for the improved clinical outcomes observed in CEBPA-mutated CN-AML patients, and suggest that lenalidomide treatment enhancing the C/EBPα-p30 protein levels and in turn miR-181a may sensitize AML blasts to chemotherapy.


Subject(s)
CCAAT-Enhancer-Binding Proteins/physiology , Gene Expression Regulation, Leukemic/drug effects , Immunologic Factors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , MicroRNAs/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Thalidomide/analogs & derivatives , Adult , Animals , Antimetabolites, Antineoplastic/pharmacology , CCAAT-Enhancer-Binding Proteins/biosynthesis , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Line, Tumor/transplantation , Cytarabine/pharmacology , Frameshift Mutation , Humans , Immunologic Factors/therapeutic use , K562 Cells , Lenalidomide , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplasm Proteins/genetics , Point Mutation , Promoter Regions, Genetic/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Structure, Tertiary , RNA, Neoplasm/genetics , Recombinant Fusion Proteins/physiology , Thalidomide/pharmacology , Thalidomide/therapeutic use , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
13.
Blood ; 122(23): 3778-83, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24085765

ABSTRACT

The coexpression of the MLL partial tandem duplication (PTD) and the FLT3 internal tandem duplication (ITD) mutations associate with a poor outcome in cytogenetically normal acute myeloid leukemia (AML). In mice, a double knock-in (dKI) of Mll(PTD/wt) and Flt3(ITD/wt) mutations induces spontaneous AML with an increase in DNA methyltransferases (Dnmt1, 3a, and 3b) and global DNA methylation index, thereby recapitulating its human AML counterpart. We determined that a regulator of Dnmts, miR-29b, is downregulated in bone marrow of dKI AML mice. Bortezomib exerted a dose-dependent increase in miR-29b expression in AML blasts ex vivo, followed by decreased Dnmts, reduced proliferation, and increased apoptosis. In vivo, bortezomib was not active against dKI AML, yet liposomal-encapsulated bortezomib, as a single agent, reversed downregulation of miR-29b in vivo and induced a long-term (90-day) disease-free remission in 80% of dKI AML mice that exhibited high leukemic burden at the start of therapy, yet showed no signs of relapse at autopsy. Taken together, these data support that liposomal bortezomib, as a single agent, eradicates Mll(PTD/wt):Flt3(ITD/wt) AML in mouse and may represent a powerful and potentially curative approach to high-risk human disease.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Myeloid-Lymphoid Leukemia Protein/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Antineoplastic Agents/administration & dosage , Boronic Acids/administration & dosage , Bortezomib , DNA Methylation , Drug Carriers , Humans , Leukemia, Experimental/genetics , Leukemia, Experimental/metabolism , Leukemia, Experimental/therapy , Leukemia, Myeloid, Acute/metabolism , Liposomes , Mice , Mice, Mutant Strains , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Proteasome Inhibitors/administration & dosage , Pyrazines/administration & dosage , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Tandem Repeat Sequences
14.
Proc Natl Acad Sci U S A ; 109(49): 20047-52, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23169640

ABSTRACT

Multiple studies have established that microRNAs (miRNAs) are involved in the initiation and progression of cancer. Notably, miR-155 is one of the most overexpressed miRNAs in several solid and hematological malignancies. Ectopic miR-155 expression in mice B cells (Eµ-miR-155 transgenic mice) has been shown to induce pre-B-cell proliferation followed by high-grade lymphoma/leukemia. Loss of miR-155 in mice resulted in impaired immunity due to defective T-cell-mediated immune response. Here we provide a mechanistic insight into miR-155-induced leukemogenesis in the Eµ-miR-155 mouse model through genome-wide transcriptome analysis of naïve B cells and target studies. We found that a key transcriptional repressor and proto-oncogene, Bcl6 is significantly down-regulated in Eµ-miR-155 mice. The reduction of Bcl6 subsequently leads to de-repression of some of the known Bcl6 targets like inhibitor of differentiation (Id2), interleukin-6 (IL6), cMyc, Cyclin D1, and Mip1α/ccl3, all of which promote cell survival and proliferation. We show that Bcl6 is indirectly regulated by miR-155 through Mxd1/Mad1 up-regulation. Interestingly, we found that miR-155 directly targets HDAC4, a corepressor partner of BCL6. Furthermore, ectopic expression of HDAC4 in human-activated B-cell-type diffuse large B-cell lymphoma (DLBCL) cells results in reduced miR-155-induced proliferation, clonogenic potential, and increased apoptosis. Meta-analysis of the diffuse large B-cell lymphoma patient microarray data showed that miR-155 expression is inversely correlated with Bcl6 and Hdac4. Hence this study provides a better understanding of how miR-155 causes disruption of the BCL6 transcriptional machinery that leads to up-regulation of the survival and proliferation genes in miR-155-induced leukemias.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic/immunology , Histone Deacetylases/metabolism , Leukemia, Lymphoid/etiology , MicroRNAs/pharmacology , Proto-Oncogene Proteins c-bcl-6/metabolism , Transcription, Genetic/drug effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Cyclin D1/metabolism , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunoblotting , Inhibitor of Differentiation Protein 2/metabolism , Interleukin-6/metabolism , Leukemia, Lymphoid/immunology , Leukemia, Lymphoid/metabolism , Luciferases , Mice , Mice, Transgenic , MicroRNAs/genetics , Microarray Analysis , Proto-Oncogene Mas , Real-Time Polymerase Chain Reaction , Repressor Proteins/metabolism , Signal Transduction/physiology
15.
Proc Natl Acad Sci U S A ; 109(31): E2110-6, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22753494

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs, 19-24 nucleotides in length, that regulate gene expression and are expressed aberrantly in most types of cancer. MiRNAs also have been detected in the blood of cancer patients and can serve as circulating biomarkers. It has been shown that secreted miRNAs within exosomes can be transferred from cell to cell and can regulate gene expression in the receiving cells by canonical binding to their target messenger RNAs. Here we show that tumor-secreted miR-21 and miR-29a also can function by another mechanism, by binding as ligands to receptors of the Toll-like receptor (TLR) family, murine TLR7 and human TLR8, in immune cells, triggering a TLR-mediated prometastatic inflammatory response that ultimately may lead to tumor growth and metastasis. Thus, by acting as paracrine agonists of TLRs, secreted miRNAs are key regulators of the tumor microenvironment. This mechanism of action of miRNAs is implicated in tumor-immune system communication and is important in tumor growth and spread, thus representing a possible target for cancer treatment.


Subject(s)
Membrane Glycoproteins/metabolism , MicroRNAs/blood , Neoplasms/blood , RNA, Neoplasm/blood , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Animals , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Paracrine Communication/genetics , RNA, Neoplasm/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics
16.
Blood ; 120(9): 1765-73, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22677130

ABSTRACT

Chromosome maintenance protein 1 (CRM1) is a nuclear export receptor involved in the active transport of tumor suppressors (e.g., p53 and nucleophosmin) whose function is altered in cancer because of increased expression and overactive transport. Blocking CRM1-mediated nuclear export of such proteins is a novel therapeutic strategy to restore tumor suppressor function. Orally bioavailable selective inhibitors of nuclear export (SINE) that irreversibly bind to CRM1 and block the function of this protein have been recently developed. Here we investigated the antileukemic activity of KPT-SINE (KPT-185 and KPT-276) in vitro and in vivo in acute myeloid leukemia (AML). KPT-185 displayed potent antiproliferative properties at submicromolar concentrations (IC50 values; 100-500 nM), induced apoptosis (average 5-fold increase), cell-cycle arrest, and myeloid differentiation in AML cell lines and patient blasts. A strong down-regulation of the oncogene FLT3 after KPT treatment in both FLT3-ITD and wild-type cell lines was observed. Finally, using the FLT3-ITD-positive MV4-11 xenograft murine model, we show that treatment of mice with oral KPT-276 (analog of KPT-185 for in vivo studies) significantly prolongs survival of leukemic mice (P < .01). In summary, KPT-SINE are highly potent in vitro and in vivo in AML. The preclinical results reported here support clinical trials of KPT-SINE in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Karyopherins/antagonists & inhibitors , Leukemia, Myeloid/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Xenograft Model Antitumor Assays , Acrylamides/pharmacology , Acrylates/pharmacology , Acute Disease , Adult , Aged , Aged, 80 and over , Animals , Apoptosis/drug effects , Blotting, Western , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Female , Humans , Kaplan-Meier Estimate , Karyopherins/genetics , Karyopherins/metabolism , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Thiazoles/pharmacology , Triazoles/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Young Adult , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Exportin 1 Protein
17.
Blood ; 119(25): 6025-31, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22566605

ABSTRACT

We recently reported promising clinical activity for a 10-day regimen of decitabine in older AML patients; high miR-29b expression associated with clinical response. Subsequent preclinical studies with bortezomib in AML cells have shown drug-induced miR-29b up-regulation, resulting in loss of transcriptional activation for several genes relevant to myeloid leukemogenesis, including DNA methyltransferases and receptor tyrosine kinases. Thus, a phase 1 trial of bortezomib and decitabine was developed. Nineteen poor-risk AML patients (median age 70 years; range, 32-84 years) enrolled. Induction with decitabine (20 mg/m(2) intravenously on days 1-10) plus bortezomib (escalated up to the target 1.3 mg/m(2) on days 5, 8, 12, and 15) was tolerable, but bortezomib-related neuropathy developed after repetitive cycles. Of previously untreated patients (age ≥ 65 years), 5 of 10 had CR (complete remission, n = 4) or incomplete CR (CRi, n = 1); 7 of 19 overall had CR/CRi. Pharmacodynamic analysis showed FLT3 down-regulation on day 26 of cycle 1 (P = .02). Additional mechanistic studies showed that FLT3 down-regulation was due to bortezomib-induced miR-29b up-regulation; this led to SP1 down-regulation and destruction of the SP1/NF-κB complex that transactivated FLT3. This study demonstrates the feasibility and preliminary clinical activity of decitabine plus bortezomib in AML and identifies FLT3 as a novel pharmacodynamic end point for future trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/analogs & derivatives , Boronic Acids/administration & dosage , Boronic Acids/pharmacokinetics , Leukemia, Myeloid, Acute/drug therapy , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Azacitidine/administration & dosage , Azacitidine/pharmacokinetics , Azacitidine/pharmacology , Boronic Acids/pharmacology , Bortezomib , Cell Line, Tumor , Decitabine , Drug Evaluation, Preclinical , Female , Gene Expression Regulation, Leukemic/drug effects , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Pyrazines/pharmacology , Treatment Outcome , Validation Studies as Topic
18.
Blood ; 119(20): 4786-97, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22408260

ABSTRACT

Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic stem cell transplant (alloHSCT), underscoring the need to further elucidate its mechanisms and develop novel treatments. Based on recent observations that microRNA-155 (miR-155) is up-regulated during T-cell activation, we hypothesized that miR-155 is involved in the modulation of aGVHD. Here we show that miR-155 expression was up-regulated in T cells from mice developing aGVHD after alloHSCT. Mice receiving miR-155-deficient donor lymphocytes had markedly reduced lethal aGVHD, whereas lethal aGVHD developed rapidly in mice recipients of miR-155 overexpressing T cells. Blocking miR-155 expression using a synthetic anti-miR-155 after alloHSCT decreased aGVHD severity and prolonged survival in mice. Finally, miR-155 up-regulation was shown in specimens from patients with pathologic evidence of intestinal aGVHD. Altogether, our data indicate a role for miR-155 in the regulation of GVHD and point to miR-155 as a novel target for therapeutic intervention in this disease.


Subject(s)
Graft vs Host Disease/genetics , MicroRNAs/physiology , Acute Disease , Animals , Cells, Cultured , Female , Gene Expression Regulation/genetics , Genetic Therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Humans , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Spleen/cytology , Spleen/metabolism , Spleen/transplantation , T-Lymphocytes/metabolism
19.
Front Immunol ; 15: 1409333, 2024.
Article in English | MEDLINE | ID: mdl-38919608

ABSTRACT

Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Macrophages , Nod2 Signaling Adaptor Protein , Receptors, IgG , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/immunology , Animals , Humans , Receptors, IgG/metabolism , Receptors, IgG/immunology , Mice , Macrophages/immunology , Macrophages/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Female , Mice, Inbred C57BL , Signal Transduction , Phagocytosis , Rituximab/pharmacology , Rituximab/therapeutic use
20.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646934

ABSTRACT

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.


Subject(s)
Leukemia, Myeloid, Acute , Pyrimidines , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Humans , Pyrimidines/therapeutic use , Mice , Animals , Dihydroorotate Dehydrogenase , Immunotherapy/methods , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female
SELECTION OF CITATIONS
SEARCH DETAIL