Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Immunity ; 45(2): 389-401, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27521269

ABSTRACT

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Subject(s)
Antigens, Polyomavirus Transforming/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Liver Neoplasms/immunology , Animals , Carcinogenesis , Cell Differentiation , Cells, Cultured , Cellular Senescence , Disease Models, Animal , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/therapy , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tamoxifen , Tumor Microenvironment
2.
J Immunol ; 211(9): 1426-1437, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37712758

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.

3.
Pharmacol Res ; 203: 107163, 2024 May.
Article in English | MEDLINE | ID: mdl-38569982

ABSTRACT

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Drug Tolerance , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
4.
Br J Haematol ; 188(5): 674-684, 2020 03.
Article in English | MEDLINE | ID: mdl-31573077

ABSTRACT

Decitabine is a DNA-hypomethylating agent that has been widely applied for the treatment of acute myeloid leukaemia (AML) patients who are elderly or unfit for intensive therapy. Although effective, the complete response rate to decitabine is only around 30% and the overall survival remains poor. Emerging data support that regulation of DNA methylation is critical to control immune cell development, differentiation and activation. We hypothesize that defining how decitabine influences the immune responses in AML will facilitate the development of novel immune-based leukaemia therapeutics. Here, we performed phenotypic and functional immune analysis on clinical samples from AML patients receiving decitabine treatment and demonstrated a significant impact of decitabine on the immune system. T-cell expression of inhibitory molecules was upregulated and the ability of CD8 T cells to produce cytokines was decreased upon decitabine treatment. Importantly, in an unbiased comprehensive analysis, we identified a unique immune signature containing a cluster of key immune markers that clearly separate patients who achieved complete remission after decitabine from those who failed to do so. Therefore, this immune signature has a strong predictive value for clinical response. Collectively, our study suggests that immune-based analyses may predict clinical response to decitabine and provide a therapeutic strategy to improve the treatment of AML.


Subject(s)
Biomarkers, Tumor/immunology , CD8-Positive T-Lymphocytes/immunology , Decitabine/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Aged , CD8-Positive T-Lymphocytes/pathology , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged
5.
J Physiol ; 597(3): 781-798, 2019 02.
Article in English | MEDLINE | ID: mdl-30548258

ABSTRACT

KEY POINTS: Circulating microparticles (MPs) are elevated in many cardiovascular diseases and have been considered as biomarkers of disease prognosis; however, current knowledge of MP functions has been mainly derived from in vitro studies and their precise impact on vascular inflammation and disease progression remains obscure. Using a diabetic rat model, we identified a >130-fold increase in MPs in plasma of diabetic rats compared to normal rats, the majority of which circulated as aggregates, expressing multiple cell markers and largely externalized phosphatidylserine; vascular images illustrate MP biogenesis and their manifestations in microvessels of diabetic rats. Using combined single microvessel perfusion and systemic cross-transfusion approaches, we delineated how diabetic MPs propagate inflammation in the vasculature and transform normal microvessels into an inflammatory phenotype observed in the microvessels of diabetic rats. Our observations derived from animal studies resembling conditions in diabetic patients, providing a mechanistic insight into MP-mediated pathogenesis of diabetes-associated multi-organ microvascular dysfunction. ABSTRACT: In various cardiovascular diseases, microparticles (MPs), the membrane-derived vesicles released during cell activation, are markedly increased in the circulation. These MPs have been recognized to play diverse roles in the regulation of cellular functions. However, current knowledge of MP function has been largely derived from in vitro studies. The precise impact of disease-induced MPs on vascular inflammation and disease progression remains obscure. In this study we investigated the biogenesis, profile and functional roles of circulating MPs using a streptozotocin-induced diabetic rat model with well-characterized microvascular functions. Our study revealed a >130-fold increase in MPs in the plasma of diabetic rats compared to normal rats. The majority of these MPs originate from platelets, leukocytes and endothelial cells (ECs), and circulate as aggregates. Diabetic MPs show greater externalized phosphatidylserine (PS) than normal MPs. When diabetic plasma or isolated diabetic MPs were perfused into normal microvessels or systemically transfused into normal rats, MPs immediately adhered to endothelium and subsequently mediated leukocyte adhesion. These microvessels then exhibited augmented permeability responses to inflammatory mediators, replicating the microvascular manifestations observed in diabetic rats. These effects were abrogated when MPs were removed from diabetic plasma or when diabetic MPs were pre-coated with a lipid-binding protein, annexin V, suggesting externalized PS to be key in mediating MP interactions with endothelium and leukocytes. Our study demonstrated that the elevated MPs in diabetic plasma are actively involved in the propagation of vascular inflammation through their adhesive surfaces, providing mechanistic insight into the pathogenesis of multi-organ vascular dysfunction that commonly occurs in diabetic patients.


Subject(s)
Cell-Derived Microparticles/physiology , Diabetes Mellitus, Experimental/physiopathology , Inflammation/physiopathology , Microvessels/physiopathology , Animals , Annexin A5/metabolism , Biomarkers/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cell-Derived Microparticles/metabolism , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Inflammation/metabolism , Microvessels/metabolism , Rats , Rats, Sprague-Dawley
6.
Immunology ; 156(1): 47-55, 2019 01.
Article in English | MEDLINE | ID: mdl-30387499

ABSTRACT

The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens. However, Treg cells also impair tumor immunity, leading to the progression of various carcinomas. ALDH expression and the subsequent production of retinoic acid by numerous cells, including dendritic cells, macrophages, eosinophils and epithelial cells, seems important in Treg induction and function in multiple organ systems. This is particularly evident in the gastrointestinal tract, pulmonary tract and skin, which are exposed to a myriad of environmental antigens and represent interfaces between the human body and the outside world. Expression of ALDH in Treg cells themselves may also be involved in the proliferation of these cells and resistance to certain cytotoxic therapies. Hence, inhibition of ALDH expression may be useful to treat cancer. Besides the direct effect of ALDH inhibition on carcinogenesis and resistance to cancer therapies, inhibition of ALDH could potentially augment the immune response to tumor antigens by inhibiting Treg induction, function and ability to promote immune tolerance to tumor cells in multiple cancer types.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Neoplasms/immunology , T-Lymphocytes, Regulatory/physiology , Aldehyde Dehydrogenase/genetics , Animals , Cell Differentiation , Cell Proliferation , Humans , Immune Tolerance , Immunity, Cellular , Tumor Microenvironment
7.
Gastroenterology ; 154(4): 1024-1036.e9, 2018 03.
Article in English | MEDLINE | ID: mdl-29408569

ABSTRACT

BACKGROUND & AIMS: Ceramide, a sphingolipid metabolite, affects T-cell signaling, induces apoptosis of cancer cells, and slows tumor growth in mice. However, it has not been used as a chemotherapeutic agent because of its cell impermeability and precipitation in aqueous solution. We developed a nanoliposome-loaded C6-ceremide (LipC6) to overcome this limitation and investigated its effects in mice with liver tumors. METHODS: Immune competent C57BL/6 mice received intraperitoneal injections of carbon tetrachloride and intra-splenic injections of oncogenic hepatocytes. As a result, tumors resembling human hepatocellular carcinomas developed in a fibrotic liver setting. After tumors formed, mice were given an injection of LipC6 or vehicle via tail vein every other day for 2 weeks. This was followed by administration, also via tail vein, of tumor antigen-specific (TAS) CD8+ T cells isolated from the spleens of line 416 mice, and subsequent immunization by intraperitoneal injection of tumor antigen-expressing B6/WT-19 cells. Tumor growth was monitored with magnetic resonance imaging. Tumor apoptosis, proliferation, and AKT expression were analyzed using immunohistochemistry and immunoblots. Cytokine production, phenotype, and function of TAS CD8+ T cells and tumor-associated macrophages (TAMs) were studied with flow cytometry, real-time polymerase chain reaction (PCR), and ELISA. Reactive oxygen species (ROS) in TAMs and bone marrow-derived macrophages, induced by colony stimulating factor 2 (GMCSF or CSF2) or colony stimulating factor 1 (MCSF or CSF1), were detected using a luminescent assay. RESULTS: Injection of LipC6 slowed tumor growth by reducing tumor cell proliferation and phosphorylation of AKT, and increasing tumor cell apoptosis, compared with vehicle. Tumors grew more slowly in mice given the combination of LipC6 injection and TAS CD8+ T cells followed by immunization compared with mice given vehicle, LipC6, the T cells, or immunization alone. LipC6 injection also reduced numbers of TAMs and their production of ROS. LipC6 induced TAMs to differentiate into an M1 phenotype, which reduced immune suppression and increased activity of CD8+ T cells. These results were validated by experiments with bone marrow-derived macrophages induced by GMCSF or MCSF. CONCLUSIONS: In mice with liver tumors, injection of LipC6 reduces the number of TAMs and the ability of TAMs to suppress the anti-tumor immune response. LipC6 also increases the anti-tumor effects of TAS CD8+ T cells. LipC6 might therefore increase the efficacy of immune therapy in patients with hepatocellular carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Ceramides/pharmacology , Liver Neoplasms/drug therapy , Tumor Burden/drug effects , Animals , Antigens, Polyomavirus Transforming/genetics , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Transformed , Cell Proliferation/drug effects , Cytokines/metabolism , Immunotherapy, Adoptive/methods , Liposomes , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles , Promoter Regions, Genetic , Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Time Factors , Tumor Escape/drug effects , Tumor Microenvironment
8.
PLoS Pathog ; 13(4): e1006318, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28410427

ABSTRACT

Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.


Subject(s)
Brain/virology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Polyomavirus Infections/immunology , Polyomavirus/physiology , Receptors, Antigen, T-Cell/immunology , Animals , Brain/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polyomavirus Infections/virology , Receptors, Antigen, T-Cell/genetics
9.
J Immunol ; 199(9): 3348-3359, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28939757

ABSTRACT

The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes/immunology , Immunity, Cellular , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Death/genetics , Cell Death/immunology , Cell Line, Tumor , Epitopes/genetics , Female , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Programmed Cell Death 1 Receptor/genetics , Signal Transduction/genetics
10.
Cancer Immunol Immunother ; 67(11): 1669-1672, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30132082

ABSTRACT

PD-1- and PD-L1-blocking monoclonal antibodies have shown significant promise in clinical settings and rekindled the hope for successful cancer immunotherapy. We recently demonstrated that interfering with PD-1/PD-L1 signaling selectively augments CD8+ T cell (TCD8) responses to subdominant determinants (SDDs) of a model tumor antigen. This was likely due to decreased lysis of SDD-specific TCD8 by neighboring immunodominant clones co-engaging the same antigen-presenting cells (APCs). We therefore proposed that PD-1-based checkpoint inhibitors widen the range of tumor determinants that can be effectively targeted by TCD8. Subsequently and using different tumor models, Chen et al. reported, in Proceedings of the National Academy of Sciences of the United States of America, that PD-L1 protects APCs from the lytic function of immunodominant TCD8 and that PD-L1 blockade narrows, rather than broadens, the overall anticancer T cell response. Here, we briefly compare and contrast the experimental systems employed by the two groups, which may account, at least partially, for the opposing conclusions drawn. We argue that the pathway(s) of tumor antigen presentation, direct presentation versus cross-presentation, and the intensity of PD-1 expression by immunodominant and subdominant TCD8 must be taken into consideration in rational design of anti-PD-1/PD-L1-adjuvanted tumor vaccines and therapies.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Immunotherapy , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Animals , Antigen Presentation , B7-H1 Antigen/immunology , Humans , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology
11.
Cancer Immunol Immunother ; 67(4): 639-652, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29332158

ABSTRACT

Tumor-reactive T lymphocytes can promote the regression of established tumors. However, their efficacy is often limited by immunosuppressive mechanisms that block T cell accumulation or function. ACT provides the opportunity to ameliorate immune suppression prior to transfer of tumor-reactive T cells to improve the therapeutic benefit. We evaluated the combination of lymphodepleting whole body irradiation (WBI) and agonist anti-CD40 (αCD40) antibody on control of established autochthonous murine neuroendocrine pancreatic tumors following the transfer of naïve tumor-specific CD8 T cells. Sublethal WBI had little impact on disease outcome but did promote T cell persistence in the lymphoid organs. Host conditioning with αCD40, an approach known to enhance APC function and T cell expansion, transiently increased donor T cell accumulation in the lymphoid organs and pancreas, but failed to control tumor progression. In contrast, combined WBI and αCD40 prolonged T cell proliferation and dramatically enhanced accumulation of donor T cells in both the lymphoid organs and pancreas. This dual conditioning approach also promoted high levels of inflammation in the pancreas and tumor, induced histological regression of established tumors, and extended the lifespan of treated mice. Prolonged survival was entirely dependent upon adoptive transfer, but only partially dependent upon IFNγ production by donor T cells. Our results identify the novel combination of two clinically relevant host conditioning approaches that synergize to overcome immune suppression and drive strong tumor-specific T cell accumulation within well-established tumors.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD40 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Chemoradiotherapy , Lymphocyte Activation/immunology , Pancreatic Neoplasms/therapy , Whole-Body Irradiation , Adoptive Transfer , Animals , Female , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tissue Donors
12.
J Hepatol ; 66(1): 75-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27520877

ABSTRACT

BACKGROUND & AIMS: We have established a clinically relevant animal model of hepatocellular cancer (HCC) in immune competent mice to elucidate the complex dialog between host immunity and tumors during HCC initiation and progression. Mechanistic findings have been leveraged to develop a clinically feasible anti-tumor chemoimmunotherapeutic strategy. METHODS: Intraperitoneal injection of carbon tetrachloride and intrasplenic inoculation of oncogenic hepatocytes were combined to induce progressive HCCs in fibrotic livers of immunocompetent mice. Immunization and adoptive cell transfer (ACT) were used to dissect the tumor antigen-specific immune response. The ability of the tyrosine kinase inhibitor sunitinib to enhance immunotherapy in the setting of HCC was evaluated. RESULTS: This new mouse model mimics human HCC and reflects its typical features. Tumor-antigen-specific CD8+ T cells maintained a naïve phenotype and remained responsive during early-stage tumor progression. Late tumor progression produced circulating tumor cells, tumor migration into draining lymph nodes, and profound exhaustion of tumor-antigen-specific CD8+ T cells associated with accumulation of programmed cell death protein 1 (PD-1)hi CD8+ T cells and regulatory T cells (Tregs). Sunitinib-mediated tumoricidal effect and Treg suppression synergized with antibody-mediated blockade of PD-1 to powerfully suppress tumor growth and activate anti-tumor immunity. CONCLUSION: Treg accumulation and upregulation of PD-1 provide two independent mechanisms to induce profound immune tolerance in HCC. Chemoimmunotherapy using Food and Drug Administration-approved sunitinib with anti-PD-1 antibodies achieved significant tumor control, supporting translation of this approach for the treatment of HCC patients. LAY SUMMARY: In the current study, we have established a clinically relevant mouse model which mimics human liver cancer. Using this unique model, we studied the response of the immune system to this aggressive cancer. Findings from this trial have led to the development of an innovative and clinically feasible chemoimmunotherapeutic strategy.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy/methods , Indoles/pharmacology , Liver Neoplasms , Pyrroles/pharmacology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Cytotoxicity, Immunologic/physiology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Histocompatibility Antigens Class II/immunology , Immune Tolerance , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice , Neoplasm Staging , Programmed Cell Death 1 Receptor/metabolism , Sunitinib , T-Lymphocytes, Regulatory/immunology
13.
Article in English | MEDLINE | ID: mdl-29106334

ABSTRACT

Previously, we showed that oral application of the environmental pollutant dibenzo[a,l]pyrene (DB[a,l]P) induces oral tumors in mice. Thus, in the present investigation we examined the effect of alcohol on DB[a,l]P-induced DNA damage and immune regulation; we showed that alcohol (6.4% v/v in the diet, 35% of Calories) significantly enhanced the levels of (-)-anti-trans-DB[a,l]P-dA while decreased the levels of GSH in the mouse oral tissues. Analysis of RNA expression revealed that DB[a,l]P alone upregulates inflammatory genes while alcohol suppresses several markers of immune surveillance. Collectively, these results suggest that alcohol may enhance oral carcinogenesis induced by DB[a,l]P.


Subject(s)
Alcohol Drinking/adverse effects , Benzopyrenes/metabolism , DNA Damage , Environmental Pollutants/metabolism , Mouth/metabolism , Alcohol Drinking/immunology , Alcoholism , Animals , Carcinogenesis , Mice , Mouth/immunology , Mouth Neoplasms
14.
Cancer Immunol Immunother ; 64(3): 325-36, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25408469

ABSTRACT

Adoptive T cell transfer (ACT) has achieved clinical success in treating established cancer, particularly in combination with lymphodepleting regimens. Our group previously demonstrated that ACT following whole-body irradiation (WBI) promotes high-level T cell accumulation, regression of established brain tumors, and long-term protection from tumor recurrence in a mouse model of SV40 T antigen-induced choroid plexus tumors. Here we asked whether an approach that can promote strong donor T-cell responses in the absence of WBI might also produce this dramatic and durable tumor elimination following ACT. Agonist anti-CD40 antibody can enhance antigen-specific CD8(+) T-cell responses and has shown clinical efficacy as a monotherapy in the setting of cancer. We show that anti-CD40 conditioning promotes rapid accumulation of tumor-specific donor CD8(+) T cells in the brain and regression of autochthonous T antigen-induced choroid plexus tumors, similar to WBI. Despite a significant increase in the lifespan, tumors eventually recurred in anti-CD40-conditioned mice coincident with loss of T-cell persistence from both the brain and lymphoid organs. Depletion of CD8(+) T cells from the peripheral lymphoid organs of WBI-conditioned recipients failed to promote tumor recurrence, but donor cells persisted in the brains long-term in CD8-depleted mice. These results demonstrate that anti-CD40 conditioning effectively enhances ACT-mediated acute elimination of autochthonous tumors, but suggest that mechanisms associated with WBI conditioning, such as the induction of long-lived T cells, may be critical for protection from tumor recurrence.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/prevention & control , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Brain Neoplasms/radiotherapy , CD40 Antigens/immunology , Disease Models, Animal , Female , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Survival Analysis , Whole-Body Irradiation
15.
Eur J Nutr ; 54(2): 251-63, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24791752

ABSTRACT

PURPOSE: Glutathione (GSH), the most abundant endogenous antioxidant, is a critical regulator of oxidative stress and immune function. While oral GSH has been shown to be bioavailable in laboratory animal models, its efficacy in humans has not been established. Our objective was to determine the long-term effectiveness of oral GSH supplementation on body stores of GSH in healthy adults. METHODS: A 6-month randomized, double-blinded, placebo-controlled trial of oral GSH (250 or 1,000 mg/day) on GSH levels in blood, erythrocytes, plasma, lymphocytes and exfoliated buccal mucosal cells was conducted in 54 non-smoking adults. Secondary outcomes on a subset of subjects included a battery of immune markers. RESULTS: GSH levels in blood increased after 1, 3 and 6 months versus baseline at both doses. At 6 months, mean GSH levels increased 30-35 % in erythrocytes, plasma and lymphocytes and 260 % in buccal cells in the high-dose group (P < 0.05). GSH levels increased 17 and 29 % in blood and erythrocytes, respectively, in the low-dose group (P < 0.05). In most cases, the increases were dose and time dependent, and levels returned to baseline after a 1-month washout period. A reduction in oxidative stress in both GSH dose groups was indicated by decreases in the oxidized to reduced glutathione ratio in whole blood after 6 months. Natural killer cytotoxicity increased >twofold in the high-dose group versus placebo (P < 0.05) at 3 months. CONCLUSIONS: These findings show, for the first time, that daily consumption of GSH supplements was effective at increasing body compartment stores of GSH.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Glutathione/administration & dosage , Immunologic Factors/administration & dosage , Intestinal Absorption , Killer Cells, Natural/immunology , Oxidative Stress , Adult , Aged , Antioxidants/adverse effects , Antioxidants/analysis , Antioxidants/metabolism , Biomarkers/blood , Biomarkers/metabolism , Dietary Supplements/adverse effects , Double-Blind Method , Erythrocytes/metabolism , Female , Glutathione/adverse effects , Glutathione/blood , Glutathione/metabolism , Humans , Immunologic Factors/adverse effects , Immunologic Factors/analysis , Immunologic Factors/metabolism , Killer Cells, Natural/metabolism , Lymphocytes/metabolism , Male , Middle Aged , Mouth Mucosa/metabolism , Oxidation-Reduction , Tissue Distribution
16.
J Immunol ; 189(12): 5549-60, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23175697

ABSTRACT

Altered peptide ligands (APLs) with enhanced binding to MHC class I can increase the CD8(+) T cell response to native Ags, including tumor Ags. In this study, we investigate the influence of peptide-MHC (pMHC) stability on recruitment of tumor Ag-specific CD8(+) T cells through cross-priming. Among the four known H-2(b)-restricted CD8(+) T cell determinants within SV40 large tumor Ag (TAg), the site V determinant ((489)QGINNLDNL(497)) forms relatively low-stability pMHC and is characteristically immunorecessive. Absence of detectable site V-specific CD8(+) T cells following immunization with wild-type TAg is due in part to inefficient cross-priming. We mutated nonanchor residues within the TAg site V determinant that increased pMHC stability but preserved recognition by both TCR-transgenic and polyclonal endogenous T cells. Using a novel approach to quantify the fraction of naive T cells triggered through cross-priming in vivo, we show that immunization with TAg variants expressing higher-stability determinants increased the fraction of site V-specific T cells cross-primed and effectively overcame the immunorecessive phenotype. In addition, using MHC class I tetramer-based enrichment, we demonstrate for the first time, to our knowledge, that endogenous site V-specific T cells are primed following wild-type TAg immunization despite their low initial frequency, but that the magnitude of T cell accumulation is enhanced following immunization with a site V variant TAg. Our results demonstrate that site V APLs cross-prime a higher fraction of available T cells, providing a potential mechanism for high-stability APLs to enhance immunogenicity and accumulation of T cells specific for the native determinant.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Polyomavirus Transforming/genetics , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Epitopes, T-Lymphocyte/genetics , Major Histocompatibility Complex/genetics , Peptides/metabolism , Simian virus 40/immunology , Animals , Antigens, Neoplasm/metabolism , Antigens, Polyomavirus Transforming/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cross-Priming/genetics , Epitopes, T-Lymphocyte/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Major Histocompatibility Complex/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Stability , Simian virus 40/genetics , Tumor Cells, Cultured , Up-Regulation/genetics , Up-Regulation/immunology
17.
J Immunol ; 188(9): 4340-8, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22447978

ABSTRACT

Repetitive Ag encounter, coupled with dynamic changes in Ag density and inflammation, imparts phenotypic and functional heterogeneity to memory virus-specific CD8 T cells in persistently infected hosts. For herpesvirus infections, which cycle between latency and reactivation, recent studies demonstrate that virus-specific T cell memory is predominantly derived from naive precursors recruited during acute infection. Whether functional memory T cells to viruses that persist in a nonlatent, low-level infectious state (smoldering infection) originate from acute infection-recruited naive T cells is not known. Using mouse polyomavirus (MPyV) infection, we previously showed that virus-specific CD8 T cells in persistently infected mice are stably maintained and functionally competent; however, a sizeable fraction of these memory T cells are short-lived. Further, we found that naive anti-MPyV CD8 T cells are primed de novo during persistent infection and contribute to maintenance of the virus-specific CD8 T cell population and its phenotypic heterogeneity. Using a new MPyV-specific TCR-transgenic system, we now demonstrate that virus-specific CD8 T cells recruited during persistent infection possess multicytokine effector function, have strong replication potential, express a phenotype profile indicative of authentic memory capability, and are stably maintained. In contrast, CD8 T cells recruited early in MPyV infection express phenotypic and functional attributes of clonal exhaustion, including attrition from the memory pool. These findings indicate that naive virus-specific CD8 T cells recruited during persistent infection contribute to preservation of functional memory against a smoldering viral infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Polyomavirus Infections/immunology , Polyomavirus/immunology , Tumor Virus Infections/immunology , Animals , Mice , Mice, Knockout , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics
18.
Cancers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927958

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastasis and mortality rates. Given the lack of actionable targets such as ER and HER2, TNBC still remains an unmet therapeutic challenge. Despite harboring high CDK4/6 expression levels, the efficacy of CDK4/6 inhibition in TNBC has been limited due to the emergence of resistance. The resistance to CDK4/6 inhibition is mainly mediated by RB1 inactivation. Since our aim is to overcome resistance to CDK4/6 inhibition, in this study, we primarily used the cell lines that do not express RB1. Following a screening for activated receptor tyrosine kinases (RTKs) upon CDK4/6 inhibition, we identified the TAM (Tyro3, Axl, and MerTK) RTKs as a crucial therapeutic vulnerability in TNBC. We show that targeting the TAM receptors with a novel inhibitor, sitravatinib, significantly sensitizes TNBC to CDK4/6 inhibitors. Upon prolonged HER2 inhibitor treatment, HER2+ breast cancers suppress HER2 expression, physiologically transforming into TNBC-like cells. We further show that the combined treatment is highly effective against drug-resistant HER2+ breast cancer as well. Following quantitative proteomics and RNA-seq data analysis, we extended our study into the immunophenotyping of TNBC. Given the roles of the TAM receptors in promoting the creation of an immunosuppressive tumor microenvironment (TME), we further demonstrate that the combination of CDK4/6 inhibitor abemaciclib and sitravatinib modifies the immune landscape of TNBC to favor immune checkpoint blockade. Overall, our study offers a novel and highly effective combination therapy against TNBC and potentially treatment-resistant HER2+ breast cancer that can be rapidly moved to the clinic.

19.
Hepatology ; 55(1): 141-52, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21898502

ABSTRACT

UNLABELLED: The high rate of mortality and frequent incidence of recurrence associated with hepatocellular carcinoma (HCC) reveal the need for new therapeutic approaches. In this study we evaluated the efficacy of a novel chemoimmunotherapeutic strategy to control HCC and investigated the underlying mechanism that increased the antitumor immune response. We developed a novel orthotopic mouse model of HCC through seeding of tumorigenic hepatocytes from SV40 T antigen (Tag) transgenic MTD2 mice into the livers of syngeneic C57BL/6 mice. These MTD2-derived hepatocytes form Tag-expressing HCC tumors specifically within the liver. This approach provides a platform to test therapeutic strategies and antigen-specific immune-directed therapy in an immunocompetent murine model. Using this model we tested the efficacy of a combination of oral sunitinib, a small molecule multitargeted receptor tyrosine kinase (RTK) inhibitor, and adoptive transfer of tumor antigen-specific CD8(+) T cells to eliminate HCC. Sunitinib treatment alone promoted a transient reduction in tumor size. Sunitinib treatment combined with adoptive transfer of tumor antigen-specific CD8(+) T cells led to elimination of established tumors without recurrence. In vitro studies revealed that HCC growth was inhibited through suppression of STAT3 signaling. In addition, sunitinib treatment of tumor-bearing mice was associated with suppression of STAT3 and a block in T-cell tolerance. CONCLUSION: These findings indicate that sunitinib inhibits HCC tumor growth directly through the STAT3 pathway and prevents tumor antigen-specific CD8(+) T-cell tolerance, thus defining a synergistic chemoimmunotherapeutic approach for HCC.


Subject(s)
Adoptive Transfer/methods , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Indoles/pharmacology , Liver Neoplasms/drug therapy , Pyrroles/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Combined Modality Therapy , Disease Models, Animal , Hep G2 Cells , Hepatocytes/immunology , Hepatocytes/transplantation , Humans , Immune Tolerance/immunology , Immunocompetence/immunology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Sunitinib
20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37895893

ABSTRACT

Immunotherapy targeting program cell death protein 1 (PD-1) in addition to chemotherapy has improved the survival of triple-negative breast cancer (TNBC) patients. However, the development of resistance and toxicity remain significant problems. Using the translationally relevant 4T1 mouse model of TNBC, we report here that dietary administration of the phytochemical quercetin enhanced the antitumor action of Cyclophosphamide, a cytotoxic drug with significant immunogenic effects that is part of the combination chemotherapy used in TNBC. We observed that quercetin favorably modified the host fecal microbiome by enriching species such as Akkermansia muciniphilia, which has been shown to improve response to anti-PD-1 therapy. We also show that quercetin and, to a greater extent, Cyclophosphamide increased the systemic frequency of T cells and NK cells. In addition, Cyclophosphamide alone and in combination with quercetin reduced the frequency of Treg, which is consistent with an antitumor immune response. On the other hand, Cyclophosphamide did not significantly alter the host microbiome, suggesting complementarity between microbiome- and immune-mediated mechanisms in potentiating the antitumor action of Cyclophosphamide by quercetin. Overall, these results support the potential for microbiota-centered dietary intervention to overcome resistance to chemoimmunotherapy in TNBC.

SELECTION OF CITATIONS
SEARCH DETAIL