Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 165(5): 1280-1292, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27203113

ABSTRACT

The cistrome is the complete set of transcription factor (TF) binding sites (cis-elements) in an organism, while an epicistrome incorporates tissue-specific DNA chemical modifications and TF-specific chemical sensitivities into these binding profiles. Robust methods to construct comprehensive cistrome and epicistrome maps are critical for elucidating complex transcriptional networks that underlie growth, behavior, and disease. Here, we describe DNA affinity purification sequencing (DAP-seq), a high-throughput TF binding site discovery method that interrogates genomic DNA with in-vitro-expressed TFs. Using DAP-seq, we defined the Arabidopsis cistrome by resolving motifs and peaks for 529 TFs. Because genomic DNA used in DAP-seq retains 5-methylcytosines, we determined that >75% (248/327) of Arabidopsis TFs surveyed were methylation sensitive, a property that strongly impacts the epicistrome landscape. DAP-seq datasets also yielded insight into the biology and binding site architecture of numerous TFs, demonstrating the value of DAP-seq for cost-effective cistromic and epicistromic annotation in any organism.


Subject(s)
Arabidopsis/genetics , DNA, Plant/genetics , Genome, Plant , Response Elements , Sequence Analysis, DNA/methods , Transcription Factors/metabolism , Amino Acid Motifs , DNA, Plant/metabolism , Epigenesis, Genetic , Indoleacetic Acids/metabolism , Plant Proteins/genetics
3.
PLoS Genet ; 18(11): e1010473, 2022 11.
Article in English | MEDLINE | ID: mdl-36413574

ABSTRACT

Histone acetylation has been shown to involve in stress responses. However, the detailed molecular mechanisms that how histone deacetylases and transcription factors function in drought stress response remain to be understood. In this research, we show that ENAP1 and ENAP2 are positive regulators of drought tolerance in plants, and the enap1enap2 double mutant is more sensitive to drought stress. Both ENAP1 and ENAP2 interact with MYB44, a transcription factor that interacts with histone deacetylase HDT4. Genetics data show that myb44 null mutation enhances the sensitivity of enap1enap2 to drought stress. Whereas, HDT4 negatively regulates plant drought response, the hdt4 mutant represses enap1enap2myb44 drought sensitive phenotype. In the normal condition, ENAP1/2 and MYB44 counteract the HDT4 function for the regulation of H3K27ac. Upon drought stress, the accumulation of MYB44 and reduction of HDT4 leads to the enrichment of H3K27ac and the activation of target gene expression. Overall, this research provides a novel molecular mechanism by which ENAP1, ENAP2 and MYB44 form a complex to restrict the function of HDT4 in the normal condition; under drought condition, accumulated MYB44 and reduced HDT4 lead to the elevation of H3K27ac and the expression of drought responsive genes, as a result, plants are drought tolerant.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Droughts , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
4.
Proc Natl Acad Sci U S A ; 119(11): e2112109119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263231

ABSTRACT

SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO2. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193966

ABSTRACT

Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria (Escherichia coli) are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mDrBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.


Subject(s)
Neoplasms/diagnostic imaging , Photoacoustic Techniques/methods , Phytochrome/metabolism , Animals , Cell Line, Tumor , Escherichia coli , Female , Genes, Reporter/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Imaging/methods , Phytochrome/pharmacology , Spectrum Analysis/methods , Tomography, X-Ray Computed/methods
6.
Proc Natl Acad Sci U S A ; 119(43): e2213373119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36256822

ABSTRACT

The high level of reactive oxygen species (ROS) in the rheumatoid arthritis (RA) microenvironment (RAM) and its persistent inflammatory nature can promote damage to joints, bones, and the synovium. Targeting strategies that integrate effective RAM regulation with imaging-based monitoring could lead to improvements in the diagnosis and treatment of RA. Here, we report the combined use of small interfering RNAs (siRNAsT/I) and Prussian blue nanoparticles (PBNPs) to silence the expression of proinflammatory cytokines TNF-α/IL-6 and scavenge the ROS associated with RAM. To enhance the in vitro and in vivo biological stability, biocompatibility, and targeting capability of the siRNAsT/I and PBNPs, macrophage membrane vesicles were used to prepare biomimetic nanoparticles, M@P-siRNAsT/I. The resulting constructs were found to suppress tumor necrosis factor-α/interleukin-6 expression and overcome the hypoxic nature of RAM, thus alleviating RA-induced joint damage in a mouse model. The M@P-siRNAsT/I of this study could be monitored via near-infrared photoacoustic (PA) imaging. Moreover, multispectral PA imaging without the need for labeling permitted the real-time evaluation of M@P-siRNAsT/I as a putative RA treatment. Clinical microcomputed tomography and histological analysis confirmed the effectiveness of the treatment. We thus suggest that macrophage-biomimetic M@P-siRNAsT/I and their analogs assisted by PA imaging could provide a new strategy for RA diagnosis, treatment, and monitoring.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Reactive Oxygen Species/metabolism , Biomimetics , X-Ray Microtomography , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , RNA, Small Interfering/therapeutic use
7.
J Am Chem Soc ; 146(7): 4620-4631, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38330912

ABSTRACT

Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvß3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Photoacoustic Techniques , Animals , Mice , Pyrroles/therapeutic use , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Nanoparticles/chemistry , Tomography, X-Ray Computed , Photoacoustic Techniques/methods , Cell Line, Tumor , Phototherapy
8.
Cancer Sci ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889208

ABSTRACT

Prostate carcinoma represents a predominant malignancy affecting the male population, with androgen deprivation therapy (ADT) serving as a critical therapeutic modality for advanced disease states, but it often leads to the development of resistance. Enzalutamide (Enz), a second-generation antiandrogen drug, initially offers substantial therapeutic benefit, but its efficacy wanes as drug resistance ensues. In this study, we found that synaptotagmin 4 (SYT4) is an upregulated gene in enzalutamide-resistant (EnzR) cell lines. The downregulation of SYT4, in combination with enzalutamide therapy, substantially enhances the antiproliferative effect on resistant prostate cancer cells beyond the capacity of enzalutamide monotherapy. SYT4 promotes vesicle efflux by binding to the synaptosome-associated protein 25 (SNAP25), thereby contributing to cell resistance against enzalutamide. The elevated expression of SYT4 is mediated by bromodomain-containing protein 4 (BRD4), and BRD4 inhibition effectively suppressed the expression of SYT4. Treatment with a therapeutic dose of enzalutamide combined with ASO-1, an antisense oligonucleotide drug targeting SYT4, shows promising results in reversing the resistance of prostate cancer to enzalutamide.

9.
Genome Res ; 31(4): 622-634, 2021 04.
Article in English | MEDLINE | ID: mdl-33722936

ABSTRACT

Heterosis or hybrid vigor is a common phenomenon in plants and animals; however, the molecular mechanisms underlying heterosis remain elusive, despite extensive studies on the phenomenon for more than a century. Here we constructed a large collection of F1 hybrids of Saccharomyces cerevisiae by spore-to-spore mating between homozygous wild strains of the species with different genetic distances and compared growth performance of the F1 hybrids with their parents. We found that heterosis was prevalent in the F1 hybrids at 40°C. A hump-shaped relationship between heterosis and parental genetic distance was observed. We then analyzed transcriptomes of selected heterotic and depressed F1 hybrids and their parents growing at 40°C and found that genes associated with one-carbon metabolism and related pathways were generally up-regulated in the heterotic F1 hybrids, leading to improved cellular redox homeostasis at high temperature. Consistently, genes related with DNA repair, stress responses, and ion homeostasis were generally down-regulated in the heterotic F1 hybrids. Furthermore, genes associated with protein quality control systems were also generally down-regulated in the heterotic F1 hybrids, suggesting a lower level of protein turnover and thus higher energy use efficiency in these strains. In contrast, the depressed F1 hybrids, which were limited in number and mostly shared a common aneuploid parental strain, showed a largely opposite gene expression pattern to the heterotic F1 hybrids. We provide new insights into molecular mechanisms underlying heterosis and thermotolerance of yeast and new clues for a better understanding of the molecular basis of heterosis in plants and animals.


Subject(s)
Carbon/metabolism , Homeostasis , Hot Temperature , Hybrid Vigor , Saccharomyces cerevisiae , Homeostasis/genetics , Hybrid Vigor/genetics , Hybridization, Genetic , Oxidation-Reduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Up-Regulation
10.
Small ; : e2311648, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402429

ABSTRACT

Ternary strategy with integration characteristics and adaptability is a simple and effective method for blooming of the performance of photovoltaic devices. Herein, a novel wideband gap polymer donor PBB2-Hs is synthesized as the guest component to optimize all-polymer solar cells (all-PSCs). High-energy photon absorption and long exciton lifetime of PBB2-Hs constitute efficient energy transfer. Good miscibility and cascade energy levels promote the formation of alloy-like structure between PBB2-Hs and host system. The dual working mechanisms greatly improve photon capture and charge transfer in active layers. Additionally, the introduction of PBB2-Hs also optimizes the ordered molecular stacking of acceptors and suppresses molecular peristalsis. Upon adding 15 wt% PBB2-Hs, the ternary all-PSC achieved a champion efficiency of 17.66%, and can still maintain 82% photostability (24 h) and 91% storage stability (1000 h) of the original PCE. Moreover, the strong molecular stacking and entanglement between PBB2-Hs and the host material increased the elongation at break of ternary blend film by 1.6 times (16.2%), allowing the flexible device to maintain 83% of the original efficiency after 800 bends (R = 5 mm). This work highlights the effectiveness of guest polymer on simultaneously improving photovoltaic performance, photostability and mechanical stability in all-PSCs.

11.
J Transl Med ; 22(1): 24, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38183115

ABSTRACT

BACKGROUND: Upper tract urothelial carcinoma (UTUC) is a rare disease, belonging to the same category of urothelial cancers as bladder cancer (BC). Despite sharing similar non-surgical treatment modalities, UTUC demonstrates a higher metastasis propensity than BC. Furthermore, although both cancers exhibit similar molecular disease emergence mechanisms, sequencing data reveals some differences. Our study investigates the transcriptomic distinctions between UTUC and BC, explores the causes behind UTUC's heightened metastatic tendency, constructs a model for UTUC metastasis and prognosis, and propose personalized treatment strategies for UTUC. METHODS: In our research, we utilized differential gene expression analysis, interaction networks, and Cox regression to explore the enhanced metastatic propensity of UTUC. We formulated and validated a prognostic risk model using diverse techniques, including cell co-culture, reverse transcription quantitative polymerase chain reaction (rt-qPCR), western blotting, and transwell experiments. Our methodological approach also involved survival analysis, risk model construction, and drug screening leveraging the databases of CTRPv2, PRISM and CMap. We used the Masson staining technique for histological assessments. All statistical evaluations were conducted using R software and GraphPad Prism 9, reinforcing the rigorous and comprehensive nature of our research approach. RESULTS: Screening through inflammatory fibrosis revealed a reduction of extracellular matrix and cell adhesion molecules regulated by proteoglycans in UTUC compared with BC, making UTUC more metastasis-prone. We demonstrated that SDC1, LUM, VEGFA, WNT7B, and TIMP3, are critical in promoting UTUC metastasis. A risk model based on these five molecules can effectively predict the risk of UTUC metastasis and disease-free survival time. Given UTUC's unique molecular mechanisms distinct from BC, we discovered that UTUC patients could better mitigate the issue of poor prognosis associated with UTUC's easy metastasis through tyrosine kinase inhibitors (TKIs) alongside the conventional gemcitabine and cisplatin chemotherapy regimen. CONCLUSIONS: The poor prognosis of UTUC because of its high metastatic propensity is intimately tied to inflammatory fibrosis induced by the accumulation of reactive oxygen species. The biological model constructed using the five molecules SDC1, LUM, VEGFA, WNT7B, and TIMP3 can effectively predict patient prognosis. UTUC patients require specialized treatments in addition to conventional regimens, with TKIs exhibiting significant potential.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Precision Medicine , Gene Expression Profiling , Transcriptome/genetics
12.
Opt Express ; 32(10): 18150-18160, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858978

ABSTRACT

Perineuronal nets (PNNs) are important functional structures on the surface of nerve cells. Observation of PNNs usually requires dyeing or fluorescent labeling. As a network structure with a micron grid and sub-wavelength thickness but no special optical properties, quantitative phase imaging (QPI) is the only purely optical method for high-resolution imaging of PNNs. We proposed a Scattering Quantitative Interference Imaging (SQII) method which measures the geometric rather than transmission or reflection phase during the scattering process to visualize PNNs. Different from QIP methods, SQII method is sensitive to scattering and not affected by wavelength changes. Via geometric phase shifting method, we simplify the phase shift operation. The SQII method not only focuses on interference phase, but also on the interference contrast. The singularity points and phase lines of the scattering geometric phase depict the edges of the network structure and can be found at the valley area of the interference contrast parameter SINDR under different wavelengths. Our SQII method has its unique imaging properties, is very simple and easy to implement and has more worth for promotion.

13.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605677

ABSTRACT

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Subject(s)
Ecosystem , Tropical Climate , Forests , Trees , Carbon
14.
Inorg Chem ; 63(9): 4185-4195, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38364251

ABSTRACT

Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.

15.
J Sci Food Agric ; 104(3): 1668-1678, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847204

ABSTRACT

BACKGROUND: Hemp protein isolates (HPIs), which provide a well-balanced profile of essential amino acids comparable to other high-quality proteins, have recently garnered significant attention. However, the underutilized functional attributes of HPIs have constrained their potential commercial applications within the food and agriculture field. This study advocates the utilization of dynamic-high-pressure-microfluidization (DHPM) for the production of stable high-internal-phase emulsions (HIPEs), offering an efficient approach to fully exploit the potential of HPI resources. RESULTS: The findings underscore the effectiveness of DHPM in producing HPI as a stabilizing agent for HIPEs with augmented antioxidant activity. Microfluidized HPI exhibited consistent adsorption and anchoring at the oil-water interface, resulting in the formation of a dense and compact layer. Concurrently, the compression of droplets within HIPEs gave rise to a polyhedral framework, conferring viscoelastic properties and a quasi-solid behavior to the emulsion. Remarkably, HIPEs stabilized by microfluidized HPI demonstrated superior oxidative and storage stability, attributable to the establishment of an antioxidative barrier by microfluidized HPI particles. CONCLUSION: This study presents an appealing approach for transforming liquid oils into solid-like fats using HPI particles, all without the need for surfactants. HIPEs stabilized by microfluidized HPI particles hold promise as emerging food ingredients for the development of emulsion-based formulations with enhanced oxidative stability, thereby finding application in the food and agricultural industries. © 2023 Society of Chemical Industry.


Subject(s)
Cannabis , Emulsions/chemistry , Excipients , Oxidation-Reduction , Antioxidants/metabolism , Oxidative Stress , Particle Size
16.
BMC Oral Health ; 24(1): 105, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233815

ABSTRACT

BACKGROUND: Peri-implantitis is a polybacterial infection that can lead to the failure of dental implant rehabilitation. This study aimed to profile the microbiome of the peri-implant plaque and estimate the effect of periodontitis on it among 40 Chinese participants with dental implant prostheses and presenting with varying peri-implant and periodontal health states. METHODS: Submucosal plaque samples were collected from four distinct clinical categories based on both their implant and periodontal health status at sampling point. Clinical examinations of dental implant and remaining teeth were carried out. Metagenomic analysis was then performed. RESULTS: The microbiome of the peri-implantitis sites differed from that of healthy implant sites, both taxonomically and functionally. Moreover, the predominant species in peri-implantitis sites were slightly affected by the presence of periodontitis. T. forsythia, P. gingivalis, T. denticola, and P. endodontalis were consistently associated with peri-implantitis and inflammatory clinical parameters regardless of the presence of periodontitis. Prevotella spp. and P. endodontalis showed significant differences in the peri-implantitis cohorts under different periodontal conditions. The most distinguishing function between diseased and healthy implants is related to flagellar assembly, which plays an important role in epithelial cell invasion. CONCLUSIONS: The composition of the peri-implant microbiome varied in the diseased and healthy states of implants and is affected by individual periodontal conditions. Based on their correlations with clinical parameters, certain species are associated with disease and healthy implants. Flagellar assembly may play a vital role in the process of peri-implantitis.


Subject(s)
Dental Implants , Dental Plaque , Microbiota , Peri-Implantitis , Periodontal Diseases , Periodontitis , Humans , Peri-Implantitis/microbiology , Dental Implants/microbiology , Cross-Sectional Studies , Dental Plaque/microbiology
17.
Small ; 19(50): e2304808, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37501314

ABSTRACT

The synthesis of efficient and highly selective catalysts and rational reactor design play decisive roles in the industrial application of the electrocatalytic carbon dioxide reduction reaction (CO2 RR). In this study, a dual-metal-organic framework (MOF) copper-based catalytic electrode is designed and prepared in one step by in situ synthesis on a foamed copper substrate. The MOF-on-MOF structure can effectively inhibit the generation of H2 and CO, and further enhance the selectivity of HCOOH. Furthermore, by using cheap and durable poly(tetrafluoroethylene) (PTFE) instead of an expensive and fragile GDE, the optimized reactor design improves the stability and durability of the gas channel and the replaceability of the electrode. The structure-optimized reactor has a maximum Faradaic efficiency of 89.2% in neutral medium, and an average current density of 26.1 mA cm-2 in the flow cell, which has comparable performance to a GDE and can continue to operate stably. The use of PTFE improves the service life of the gas mass transfer channel, and the independent catalytic electrode can provide good catalytic efficiency. These results provide new insights into the reaction mechanism of structurally recombined double MOFs and PTFE-optimized CO2 RR reactor designs, providing technical support for the practical industrial application of the CO2 RR.

18.
Hum Reprod ; 38(11): 2128-2136, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37671597

ABSTRACT

STUDY QUESTION: Can maternal serum levels of soluble programmed cell death-1 (sPD-1) and its ligand (sPD-L1) serve as biomarkers for missed miscarriage (MM)? SUMMARY ANSWER: Serum sPD-L1 levels are significantly decreased in MM patients and may serve as a potential predictive biomarker for miscarriage. WHAT IS KNOWN ALREADY: Programmed cell death-1 (PD-1) and its ligand (PD-L1) comprise important immune inhibitory checkpoint signaling to maintain pregnancy. Their soluble forms are detectable in human circulation and are associated with immunosuppression. STUDY DESIGN, SIZE, DURATION: Three independent cohorts attending tertiary referral hospitals were studied. The first (discovery) cohort was cross-sectional and included MM patients and healthy pregnant (HP) women matched on BMI. The second validation cohort contained MM patients and women with legally induced abortion (IA). The third prospective observational study recruited subjects requiring IVF treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS: In the discovery cohort, we enrolled 108 MM patients and 115 HP women who had a full-term pregnancy at 6-14 weeks of gestation. In the validation cohort, we recruited 25 MM patients and 25 women with IA. Blood samples were collected at the first prenatal visit for HP women or on the day of dilatation and curettage surgery (D&C) for MM and IA subjects to determine serum sPD-1 and sPD-L1 levels. Placenta samples were harvested during the D&C within the validation cohort to measure gene and protein expression. The prospective cohort collected serial blood samples weekly from 75 volunteers with embryo transfer (ET) after IVF. MAIN RESULTS AND THE ROLE OF CHANCE: Circulating sPD-L1 levels were reduced by 50% in patients with MM (55.7 ± 16.04 pg/ml) compared to HP controls (106.7 ± 58.46 pg/ml, P < 0.001) and the difference remained significant after adjusting for maternal age and gestational age, whereas no significant differences in sPD-1 level were observed. Likewise, serum sPD-L1 was lower in MM patients than in IA subjects and accompanied by downregulated PD-L1-related gene expression levels in the placenta. In the IVF cohort, applying the changing rate of sPD-L1 level after ET achieved a predictive performance for miscarriage with receiver operating characteristics = 0.73 (95% CI: 0.57-0.88, P < 0.01). LIMITATIONS, REASONS FOR CAUTION: The study was mainly confined to East Asian pregnant women. Further large prospective pregnancy cohorts are required to validate the predictive performance of sPD-L1 on miscarriage. WIDER IMPLICATIONS OF THE FINDINGS: Reduced circulating sPD-L1 level and downregulated placental PD-L1 expression in miscarriage indicate that dysfunction in PD-L1 signals is a potential underlying mechanism for pregnancy loss. Our findings further extend the importance of the PD-L1 axis in pregnancy maintenance in early pregnancy. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by grants from the Subject Innovation Team of Shaanxi University of Chinese Medicine (2019-Y502), General Research Fund (14122021), and Key Laboratory of Model Animal Phenotyping and Basic Research in Metabolic Diseases (2018KSYS003). The authors declare that they have no competing interests to be disclosed. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Abortion, Spontaneous , Animals , Pregnancy , Female , Humans , Prospective Studies , B7-H1 Antigen , Placenta , Cross-Sectional Studies , Ligands , Biomarkers , Apoptosis
19.
Cells Tissues Organs ; 212(2): 147-154, 2023.
Article in English | MEDLINE | ID: mdl-34695819

ABSTRACT

There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.


Subject(s)
Hemolymph , Lymph Nodes , Rats , Humans , Animals , Lymph Nodes/pathology , Kidney , Transplantation, Homologous , Erythrocytes
20.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 41-44, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38015543

ABSTRACT

The skeletal system of the body is responsible for important functions in the human body. In addition to causing movement, this system also plays a role in the production of blood cells and fat storage. Bone marrow is a spongy or viscous tissue that fills the inside of the body's bones. The basic structure of bone marrow is of two types. Red bone marrow and yellow bone marrow. Red bone marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow bone marrow is made mostly of fat and contains stem cells that can turn into cartilage, fat, or bone cells. Human bone marrow mesenchymal stem cells (HBMSCs) are widely used cell sources for clinical bone regeneration. Achieving a therapeutic effect depends on the osteogenic differentiation potential of the stem cells. The purpose of judging the morphology of bone marrow cells is to diagnose leukemia or bone marrow disorders, determine the cause of severe anemia or thrombocytopenia and low platelet count, identify abnormal chromosomes to prevent hereditary diseases, and plan their treatment. In this study, we examined the morphological characteristics of bone marrow cells, mesenchyme cells, and osteoblasts in a laboratory environment. The results of the morphological investigations showed changes such as the change of the position of the nucleus and the rounding of the cytoplasm in the differentiated cells compared to the mesenchyme cells. Therefore, to identify and diagnose as many of these cells as possible, molecular genetic techniques such as network algorithms and fluorescence staining can be used for hematological and cytomorphological investigations.


Subject(s)
Leukemia , Osteogenesis , Humans , Animals , Rats , Bone Marrow Cells , Erythrocytes , Blood Platelets
SELECTION OF CITATIONS
SEARCH DETAIL