Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Annu Rev Biomed Eng ; 26(1): 119-139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38316063

ABSTRACT

Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer-immune cell interactions and assess the effectiveness of immunotherapies. We explore the advantages and limitations of the wide range of 3D spheroid and single-cell microfluidic models recently developed, highlighting the various approaches in device generation and applications in immunotherapy screening for potential opportunities for point-of-care approaches.


Subject(s)
Microfluidics , Neoplasms , Point-of-Care Systems , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Microfluidics/methods , Tumor Microenvironment , Immunotherapy/methods , Spheroids, Cellular , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Communication , Animals , Lab-On-A-Chip Devices
2.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821719

ABSTRACT

BACKGROUND: To accelerate the translation of novel immunotherapeutic treatment approaches, the development of analytic methods to assess their efficacy at early in vitro stages is necessary. Using a droplet-based microfluidic platform, we have established a method for multiparameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) natural killer (NK) cells are of increased interest in the current immunotherapy landscape and thus provide an optimal model for evaluating our novel methodology. METHODS: For this approach, NK cells transduced with a CD19 CAR were compared with non-transduced NK cells in their ability to kill a lymphoma cell line. Using our microfluidic platform, we were able to quantify the increase in cytotoxicity and synaptic contact formation of CAR NK cells over non-transduced NK cells. We then optimized our droplet sorter and successfully used it to separate NK cells based on target cell killing to perform transcriptomic analyses. RESULTS: Our data revealed expected improvement in cytotoxicity with the CD19 CAR but more importantly, provided unique insights into the factors involved in the cytotoxic mechanisms of CAR NK cells. This demonstrates a novel, improved system for accelerating the pre-clinical screening of future immunotherapy treatments. CONCLUSIONS: This study provides a new potential approach for enhanced early screening of immunotherapies to improve their development, with a highly relevant cell model to demonstrate. Additionally, our validation studies provided some potential insights into transcriptomic determinants influencing CAR NK cytotoxicity.


Subject(s)
Killer Cells, Natural , Receptors, Chimeric Antigen , Single-Cell Analysis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Single-Cell Analysis/methods , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Phenotype , Cytotoxicity, Immunologic , Genotype , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL