Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 625
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Crit Care ; 28(1): 143, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689310

ABSTRACT

BACKGROUND: To determine whether intermittent intravenous (IV) paracetamol as primary analgesic would significantly reduce morphine consumption in children aged 0-3 years after cardiac surgery with cardiopulmonary bypass. METHODS: Multi-center, randomized, double-blinded, controlled trial in four level-3 Pediatric Intensive Care Units (PICU) in the Netherlands and Belgium. Inclusion period; March 2016-July 2020. Children aged 0-3 years, undergoing cardiac surgery with cardiopulmonary bypass were eligible. Patients were randomized to continuous morphine or intermittent IV paracetamol as primary analgesic after a loading dose of 100 mcg/kg morphine was administered at the end of surgery. Rescue morphine was given if numeric rating scale (NRS) pain scores exceeded predetermined cutoff values. Primary outcome was median weight-adjusted cumulative morphine dose in mcg/kg in the first 48 h postoperative. For the comparison of the primary outcome between groups, the nonparametric Van Elteren test with stratification by center was used. For comparison of the proportion of patients with one or more NRS pain scores of 4 and higher between the two groups, a non-inferiority analysis was performed using a non-inferiority margin of 20%. RESULTS: In total, 828 were screened and finally 208 patients were included; parents of 315 patients did not give consent and 305 were excluded for various reasons. Fourteen of the enrolled 208 children were withdrawn from the study before start of study medication leaving 194 patients for final analysis. One hundred and two patients received intermittent IV paracetamol, 106 received continuous morphine. The median weight-adjusted cumulative morphine consumption in the first 48 h postoperative in the IV paracetamol group was 5 times lower (79%) than that in the morphine group (median, 145.0 (IQR, 115.0-432.5) mcg/kg vs 692.6 (IQR, 532.7-856.1) mcg/kg; P < 0.001). The rescue morphine consumption was similar between the groups (p = 0.38). Non-inferiority of IV paracetamol administration in terms of NRS pain scores was proven; difference in proportion - 3.1% (95% CI - 16.6-10.3%). CONCLUSIONS: In children aged 0-3 years undergoing cardiac surgery, use of intermittent IV paracetamol reduces the median weight-adjusted cumulative morphine consumption in the first 48 h after surgery by 79% with equal pain relief showing equipoise for IV paracetamol as primary analgesic. Trial Registration Clinicaltrials.gov, Identifier: NCT05853263; EudraCT Number: 2015-001835-20.


Subject(s)
Acetaminophen , Morphine , Humans , Morphine/therapeutic use , Morphine/administration & dosage , Acetaminophen/therapeutic use , Acetaminophen/administration & dosage , Male , Female , Infant , Double-Blind Method , Pain, Postoperative/drug therapy , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Belgium , Netherlands , Infant, Newborn , Administration, Intravenous , Cardiac Surgical Procedures/methods , Child, Preschool , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/therapeutic use , Intensive Care Units, Pediatric/organization & administration , Intensive Care Units, Pediatric/statistics & numerical data , Pain Measurement/methods
2.
Cell Mol Life Sci ; 80(3): 79, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36867267

ABSTRACT

Pulmonary neuroendocrine (NE) cells represent a small population in the airway epithelium, but despite this, hyperplasia of NE cells is associated with several lung diseases, such as congenital diaphragmatic hernia and bronchopulmonary dysplasia. The molecular mechanisms causing the development of NE cell hyperplasia remains poorly understood. Previously, we showed that the SOX21 modulates the SOX2-initiated differentiation of epithelial cells in the airways. Here, we show that precursor NE cells start to develop in the SOX2 + SOX21 + airway region and that SOX21 suppresses the differentiation of airway progenitors to precursor NE cells. During development, clusters of NE cells start to form and NE cells mature by expressing neuropeptide proteins, such as CGRP. Deficiency in SOX2 resulted in decreased clustering, while deficiency in SOX21 increased both the numbers of NE ASCL1 + precursor cells early in development, and the number of mature cell clusters at E18.5. In addition, at the end of gestation (E18.5), a number of NE cells in Sox2 heterozygous mice, did not yet express CGRP suggesting a delay in maturation. In conclusion, SOX2 and SOX21 function in the initiation, migration and maturation of NE cells.


Subject(s)
Neuroendocrine Cells , SOXB1 Transcription Factors , SOXB2 Transcription Factors , Animals , Mice , Calcitonin Gene-Related Peptide , Cell Differentiation/genetics , Epithelium , Hyperplasia , Neuroendocrine Cells/cytology , Neuroendocrine Cells/metabolism
3.
PLoS Genet ; 17(8): e1009698, 2021 08.
Article in English | MEDLINE | ID: mdl-34358225

ABSTRACT

Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.


Subject(s)
DNA Copy Number Variations , Enteric Nervous System/growth & development , Gene Regulatory Networks , Hirschsprung Disease/genetics , Animals , Case-Control Studies , Disease Models, Animal , Enteric Nervous System/chemistry , Epistasis, Genetic , Genetic Predisposition to Disease , Haplotypes , Humans , Mice , Zebrafish
4.
Pediatr Res ; 93(3): 625-632, 2023 02.
Article in English | MEDLINE | ID: mdl-35595912

ABSTRACT

OBJECTIVE: To demonstrate and validate the improvement of current risk stratification for bronchopulmonary dysplasia (BPD) early after birth by plasma protein markers (sialic acid-binding Ig-like lectin 14 (SIGLEC-14), basal cell adhesion molecule (BCAM), angiopoietin-like 3 protein (ANGPTL-3)) in extremely premature infants. METHODS AND RESULTS: Proteome screening in first-week-of-life plasma samples of n = 52 preterm infants <32 weeks gestational age (GA) on two proteomic platforms (SomaLogic®, Olink-Proteomics®) confirmed three biomarkers with significant predictive power: BCAM, SIGLEC-14, and ANGPTL-3. We demonstrate high sensitivity (0.92) and specificity (0.86) under consideration of GA, show the proteins' critical contribution to the predictive power of known clinical risk factors, e.g., birth weight and GA, and predicted the duration of mechanical ventilation, oxygen supplementation, as well as neonatal intensive care stay. We confirmed significant predictive power for BPD cases when switching to a clinically applicable method (enzyme-linked immunosorbent assay) in an independent sample set (n = 25, p < 0.001) and demonstrated disease specificity in different cohorts of neonatal and adult lung disease. CONCLUSION: While successfully addressing typical challenges of clinical biomarker studies, we demonstrated the potential of BCAM, SIGLEC-14, and ANGPTL-3 to inform future clinical decision making in the preterm infant at risk for BPD. TRIAL REGISTRATION: Deutsches Register Klinische Studien (DRKS) No. 00004600; https://www.drks.de . IMPACT: The urgent need for biomarkers that enable early decision making and personalized monitoring strategies in preterm infants with BPD is challenged by targeted marker analyses, cohort size, and disease heterogeneity. We demonstrate the potential of the plasma proteins BCAM, SIGLEC-14, and ANGPTL-3 to identify infants with BPD early after birth while improving the predictive power of clinical variables, confirming the robustness toward proteome assays and proving disease specificity. Our comprehensive analysis enables a phase-III clinical trial that allows full implementation of the biomarkers into clinical routine to enable early risk stratification in preterms with BPD.


Subject(s)
Bronchopulmonary Dysplasia , Infant , Infant, Newborn , Humans , Bronchopulmonary Dysplasia/prevention & control , Proteome , Proteomics , Gestational Age , Infant, Extremely Premature , Biomarkers
5.
Pharm Res ; 40(9): 2155-2166, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37603141

ABSTRACT

PURPOSE: Despite being off-label, intravenous paracetamol (PCM) is increasingly used to control mild-to-moderate pain in preterm neonates. Here we aim to quantify the maturation of paracetamol elimination pathways in preterm neonates born below 32 weeks of gestation. METHODS: Datasets after single dose (rich data) or multiple doses (sparse data) of intravenous PCM dose (median (range)) 9 (3-25) mg/kg were pooled, containing 534 plasma and 44 urine samples of PCM and metabolites (PCM-glucuronide, PCM-sulfate, PCM-cysteine, and PCM-mercapturate) from 143 preterm neonates (gestational age 27.7 (24.0-31.9) weeks, birthweight 985 (462-1,925) g, postnatal age (PNA) 5 (0-30) days, current weight 1,012 (462-1,959) g. Population pharmacokinetic analysis was performed using NONMEM® 7.4. RESULTS: For a typical preterm neonate (birthweight 985 g; PNA 5 days), PCM clearance was 0.137 L/h, with glucuronidation, sulfation, oxidation and unchanged renal clearance accounting for 5.3%, 73.7%, 16.3% and 4.6%, respectively. Maturational changes in total PCM clearance and its elimination pathways were best described by birthweight and PNA. Between 500-1,500 g birthweight, total PCM clearance increases by 169%, with glucuronidation, sulfation and oxidation clearance increasing by 347%, 164% and 164%. From 1-30 days PNA for 985 g birthweight neonate, total PCM clearance increases by 167%, with clearance via glucuronidation and oxidation increasing by 551%, and sulfation by 69%. CONCLUSION: Birthweight and PNA are the most important predictors for maturational changes in paracetamol clearance and its glucuronidation, sulfation and oxidation. As a result, dosing based on bodyweight alone will not lead to consistent paracetamol concentrations among preterm neonates.


Subject(s)
Acetaminophen , Infant, Premature , Infant, Newborn , Pregnancy , Female , Humans , Adult , Birth Weight , Gestational Age , Parturition , Infant, Very Low Birth Weight
6.
Eur J Pediatr ; 182(6): 2577-2589, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36939879

ABSTRACT

Diaphragmatic thickness (Tdi) and diaphragm thickening fraction (dTF) are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children are scarce. We determined reference values of Tdi and dTF using ultrasound in healthy children aged 0-8 years old and assessed their reproducibility. In a prospective, observational cohort, Tdi and dTF were measured on ultrasound images across four age groups comprising at least 30 children per group: group 1 (0-6 months), group 2 (7 months-1 year), group 3 (2-4 years) and group 4 (5-8 years). Ultrasound images of 137 healthy children were included. Mean Tdi at inspiration was 2.07 (SD 0.40), 2.09 (SD 0.40), 1.69 (SD 0.30) and 1.72 (SD 0.30) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at expiration was 1.64 (SD 0.30), 1.67 (SD 0.30), 1.38 (SD 0.20) and 1.42 (SD 0.20) mm for groups 1, 2, 3 and 4, respectively. Mean Tdi at inspiration and mean Tdi at expiration for groups 1 and 2 were significantly greater than those for groups 3 and 4 (both p < 0.001). Mean dTF was 25.4% (SD 10.4), 25.2% (SD 8.3), 22.8% (SD 10.9) and 21.3% (SD 7.1) for group 1, 2, 3 and 4, respectively. The intraclass correlation coefficients (ICC) representing the level of inter-rater reliability between two examiners performing the ultrasounds was 0.996 (95% CI 0.982-0.999). ICC of the inter-rater reliability between the raters in 11 paired assessments was 0.989 (95% CI 0.973-0.995).   Conclusion: Ultrasound measurements of Tdi and dTF were highly reproducible in healthy children aged 0-8 years.    Trial registration: ClinicalTrials.gov identifier (NCT number): NCT04589910. What is Known: • Diaphragmatic thickness and diaphragm thickening fraction are widely used parameters in ultrasound studies of the diaphragm in mechanically ventilated children, but normal values for healthy children to compare these with are scarce. What is New: • We determined normal values of diaphragmatic thickness and diaphragm thickening fraction using ultrasound in 137 healthy children aged 0-8 years old. The diaphragmatic thickness of infants up to 1 year old was significantly greater than that of children from 2 to 8 years old. Diaphragmatic thickness decreased with an increase in body surface area. These normal values in healthy children can be used to assess changes in respiratory muscle thickness in mechanically ventilated children.


Subject(s)
Diaphragm , Respiration, Artificial , Infant , Humans , Child , Infant, Newborn , Child, Preschool , Diaphragm/diagnostic imaging , Diaphragm/physiology , Reference Values , Reproducibility of Results , Prospective Studies , Ultrasonography/methods
7.
Pediatr Res ; 91(6): 1361-1369, 2022 05.
Article in English | MEDLINE | ID: mdl-34257402

ABSTRACT

The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.


Subject(s)
Serotonin , Spinal Cord , Animals , Longevity , Nociception , Pain , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin/pharmacology , Spinal Cord/metabolism
8.
Br J Clin Pharmacol ; 88(10): 4285-4296, 2022 10.
Article in English | MEDLINE | ID: mdl-32851677

ABSTRACT

The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.


Subject(s)
Proteomics , Biological Availability , Child , Computer Simulation , Humans , Metabolic Clearance Rate , Pharmaceutical Preparations
9.
Crit Care ; 26(1): 88, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361254

ABSTRACT

BACKGROUND: Management and monitoring of pain and sedation to reduce discomfort as well as side effects, such as over- and under-sedation, withdrawal syndrome and delirium, is an integral part of pediatric intensive care practice. However, the current state of management and monitoring of analgosedation across European pediatric intensive care units (PICUs) remains unknown. The aim of this survey was to describe current practices across European PICUs regarding the management and monitoring of pain and sedation. METHODS: An online survey was distributed among 357 European PICUs assessing demographic features, drug choices and dosing, as well as usage of instruments for monitoring pain and sedation. We also compared low- and high-volume PICUs practices. Responses were collected from January to April 2021. RESULTS: A total of 215 (60% response rate) PICUs from 27 European countries responded. Seventy-one percent of PICUs stated to use protocols for analgosedation management, more frequently in high-volume PICUs (77% vs 63%, p = 0.028). First-choice drug combination was an opioid with a benzodiazepine, namely fentanyl (51%) and midazolam (71%) being the preferred drugs. The starting doses differed between PICUs from 0.1 to 5 mcg/kg/h for fentanyl, and 0.01 to 0.5 mg/kg/h for midazolam. Daily assessment and documentation for pain (81%) and sedation (87%) was reported by most of the PICUs, using the preferred validated FLACC scale (54%) and the COMFORT Behavioural scale (48%), respectively. Both analgesia and sedation were mainly monitored by nurses (92% and 84%, respectively). Eighty-six percent of the responding PICUs stated to use neuromuscular blocking agents in some scenarios. Monitoring of paralysed patients was preferably done by observation of vital signs with electronic devices support. CONCLUSIONS: This survey provides an overview of current analgosedation practices among European PICUs. Drugs of choice, dosing and assessment strategies were shown to differ widely. Further research and development of evidence-based guidelines for optimal drug dosing and analgosedation assessment are needed.


Subject(s)
Analgesia , Intensive Care Units, Pediatric , Analgesia/methods , Child , Europe , Humans , Pain , Surveys and Questionnaires
10.
Eur J Anaesthesiol ; 39(8): 662-672, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34860716

ABSTRACT

BACKGROUND: The effect of peri-operative management on the neonatal brain is largely unknown. Triggers for perioperative brain injury might be revealed by studying changes in neonatal physiology peri-operatively. OBJECTIVE: To study neonatal pathophysiology and cerebral blood flow regulation peri-operatively using the neuro-cardiovascular graph. DESIGN: Observational, prospective cohort study on perioperative neuromonitoring. Neonates were included between July 2018 and April 2020. SETTING: Multicentre study in two high-volume tertiary university hospitals. PATIENTS: Neonates with congenital diaphragmatic hernia were eligible if they received surgical treatment within the first 28 days of life. Exclusion criteria were major cardiac or chromosomal anomalies, or syndromes associated with altered cerebral perfusion or major neurodevelopmental impairment. The neonates were stratified into different groups by type of peri-operative management. INTERVENTION: Each patient was monitored using near-infrared spectroscopy and EEG in addition to the routine peri-operative monitoring. Neurocardiovascular graphs were computed off-line. MAIN OUTCOME MEASURES: The primary endpoint was the difference in neurocardiovascular graph connectivity in the groups over time. RESULTS: Thirty-six patients were included. The intraoperative graph connectivity decreased in all patients operated upon in the operation room (OR) with sevoflurane-based anaesthesia ( P  < 0.001) but remained stable in all patients operated upon in the neonatal intensive care unit (NICU) with midazolam-based anaesthesia. Thoracoscopic surgery in the OR was associated with the largest median connectivity reduction (0.33 to 0.12, P  < 0.001) and a loss of baroreflex and neurovascular coupling. During open surgery in the OR, all regulation mechanisms remained intact. Open surgery in the NICU was associated with the highest neurovascular coupling values. CONCLUSION: Neurocardiovascular graphs provided more insight into the effect of the peri-operative management on the pathophysiology of neonates undergoing surgery. The neonate's clinical condition as well as the surgical and the anaesthesiological approach affected the neonatal physiology and CBF regulation mechanisms at different levels. TRIAL REGISTRATION: NL6972, URL: https://www.trialre-gister.nl/trial/6972 .


Subject(s)
Hernias, Diaphragmatic, Congenital , Cerebrovascular Circulation , Hernias, Diaphragmatic, Congenital/surgery , Humans , Infant, Newborn , Prospective Studies , Thoracoscopy/methods , Treatment Outcome
11.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361852

ABSTRACT

The lung originates from the ventral foregut and develops into an intricate branched structure of airways, alveoli, vessels and support tissue. As the lung develops, cells become specified and differentiate into the various cell lineages. This process is controlled by specific transcription factors, such as the SRY-related HMG-box genes SOX2 and SOX21, that are activated or repressed through intrinsic and extrinsic signals. Disturbances in any of these processes during the development of the lung may lead to various pediatric lung disorders, such as Congenital Diaphragmatic Hernia (CDH), Congenital Pulmonary Airway Malformation (CPAM) and Broncho-Pulmonary Dysplasia (BPD). Changes in the composition of the airways and the alveoli may result in reduced respiratory function and eventually lead to chronic lung disorders. In this concise review, we describe different intrinsic and extrinsic cellular processes required for proper differentiation of the epithelium during development and regeneration, and the influence of the microenvironment on this process with special focus on SOX2 and SOX21.


Subject(s)
Hernias, Diaphragmatic, Congenital , Lung Diseases , Humans , Child , Cell Differentiation/genetics , Transcription Factors , Pulmonary Alveoli , Lung , Lung Diseases/genetics , SOXB1 Transcription Factors/genetics
12.
Pediatr Res ; 89(7): 1681-1686, 2021 05.
Article in English | MEDLINE | ID: mdl-33504957

ABSTRACT

BACKGROUND: Painful procedures in early life cause acute pain and can alter pain processing at a spinal level lasting into adulthood. Current methods of analgesia seem unable to prevent both acute and long-term hypersensitivity associated with neonatal pain. The current study aims to prevent acute and long-term hypersensitivity associated with neonatal procedural pain using methadone analgesia in rat pups. METHODS: Sprague-Dawley rat pups received either methadone (1 mg/kg) or saline prior to repetitive needle pricks into the left hind paw from the day of birth (postnatal day (P)0) to P7. Control littermates received a tactile stimulus. Mechanical sensitivity was assessed during the neonatal period (P0-P7), from weaning to adulthood (3-7 weeks) and following surgical re-injury of the same dermatome in adulthood. RESULTS: Methadone administration completely reversed acute hypersensitivity from P0 to P7. In addition, neonatal methadone analgesia prevented prolonged hypersensitivity after re-injury in adulthood, without affecting sensitivity from weaning to adulthood. CONCLUSIONS: The current study shows that neonatal methadone analgesia can attenuate acute as well as long-term hypersensitivity associated with neonatal procedural pain in a rat model. IMPACT: Methadone treatment attenuates acute and long-term hypersensitivity associated with neonatal pain in a rat model. Clinical effectiveness studies are urgently warranted to assess acute and long-term analgesic effectivity of methadone.


Subject(s)
Analgesics, Opioid/therapeutic use , Methadone/therapeutic use , Pain Management/methods , Pain, Procedural/drug therapy , Animals , Animals, Newborn , Rats , Rats, Sprague-Dawley
13.
Pediatr Res ; 90(6): 1201-1206, 2021 12.
Article in English | MEDLINE | ID: mdl-33603216

ABSTRACT

BACKGROUND: Morphine is commonly used for postoperative analgesia in children. Here we studied the pharmacodynamics of morphine in children after cardiac surgery receiving protocolized morphine. METHODS: Data on morphine rescue requirements guided by validated pain scores in children (n = 35, 3-36 months) after cardiac surgery receiving morphine as loading dose (100 µg kg-1) with continuous infusion (40 µg kg-1 h-1) from a previous study on morphine pharmacokinetics were analysed using repeated time-to-event (RTTE) modelling. RESULTS: During the postoperative period (38 h (IQR 23-46)), 130 morphine rescue events (4 (IQR 1-5) per patient) mainly occurred in the first 24 h (107/130) at a median morphine concentration of 29.5 ng ml-1 (range 7-180 ng ml-1). In the RTTE model, the hazard of rescue morphine decreased over time (half-life 18 h; P < 0.001), while the hazard for rescue morphine (21.9% at 29.5 ng ml-1) increased at higher morphine concentrations (P < 0.001). CONCLUSIONS: In this study on protocolized morphine analgesia in children, rescue morphine was required at a wide range of morphine concentrations and further increase of the morphine concentration did not lead to a decrease in hazard. Future studies should focus on a multimodal approach using other opioids or other analgesics to treat breakthrough pain in children. IMPACT: In children receiving continuous morphine infusion, administration of rescue morphine is an indicator for insufficient effect or an event. Morphine rescue events were identified at a wide range of morphine concentrations upon a standardized pain protocol consisting of continuous morphine infusion and morphine as rescue boluses. The expected number of rescue morphine events was found to increase at higher morphine concentrations. Instead of exploring more aggressive morphine dosing, future research should focus on a multimodal approach to treat breakthrough pain in children.


Subject(s)
Analgesics, Opioid/administration & dosage , Breakthrough Pain/drug therapy , Morphine/administration & dosage , Pain, Postoperative/drug therapy , Child , Dose-Response Relationship, Drug , Female , Humans , Male
14.
Pediatr Res ; 89(3): 518-525, 2021 02.
Article in English | MEDLINE | ID: mdl-32413891

ABSTRACT

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a lethal congenital lung disorder associated with heterozygous variants in the FOXF1 gene or its regulatory region. Patients with ACD/MPV unnecessarily undergo invasive and expensive treatments while awaiting a diagnosis. The aim of this study was to reduce the time to diagnose ACD/MPV by developing a targeted next-generation sequencing (NGS) panel that detects FOXF1 variants. METHODS: A FOXF1-targeted NGS panel was developed for detection of mutations and large genomic alterations and used for retrospective testing of ACD/MPV patients and controls. Results were confirmed with Sanger sequencing and SNP array analysis. RESULTS: Each amplicon of the FOXF1-targeted NGS panel was efficiently sequenced using DNA isolated from blood or cell lines of 15 ACD/MPV patients and 8 controls. Moreover, testing of ACD/MPV patients revealed six novel and six previously described pathogenic or likely pathogenic FOXF1 alterations. CONCLUSION: We successfully designed a fast and reliable targeted genetic test to detect variants in the FOXF1 gene and its regulatory region in one run. This relatively noninvasive test potentially prevents unnecessary suffering for patients and reduces the use of futile and expensive treatments like extra-corporeal membrane oxygenation. IMPACT: FOXF1-targeted NGS potentially prevents ACD/MPV patients from unnecessary suffering and expensive treatments. FOXF1-targeted NGS potentially reduces the number of misdiagnosis in ACD/MPV patients. Retrospective testing of ACD/MPV patients using FOXF1-targeted NGS revealed six novel pathogenic or likely pathogenic variants.


Subject(s)
Forkhead Transcription Factors/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Persistent Fetal Circulation Syndrome/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Abnormalities, Multiple/genetics , DNA Copy Number Variations , DNA Mutational Analysis/methods , Exons/genetics , Female , Fibroblasts/chemistry , Gene Duplication , Humans , Infant , Infant, Newborn , Lung/chemistry , Male , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Sequence Deletion , Unnecessary Procedures
15.
Br J Clin Pharmacol ; 87(3): 1443-1454, 2021 03.
Article in English | MEDLINE | ID: mdl-32901947

ABSTRACT

AIMS: Ketorolac is a nonsteroidal anti-inflammatory racemic drug with analgesic effects only attributed to its S-enantiomer. The aim of this study is to quantify enantiomer-specific maturational pharmacokinetics (PK) of ketorolac and investigate if the contribution of both enantiomers to the total ketorolac concentration remains equal between infants and adults or if a change in target racemic concentration should be considered when applied to infants. METHODS: Data were pooled from 5 different studies in adults, children and infants, with 1020 plasma concentrations following single intravenous ketorolac administration. An allometry-based enantiomer-specific population PK model was developed with NONMEM 7.3. Simulations were performed in typical adults and infants to investigate differences in S- and R-ketorolac exposure. RESULTS: S- and R-ketorolac PK were best described with a 3- and a 2-compartment model, respectively. The allometry-based PK parameters accounted for changes between populations. No maturation function of ketorolac clearance could be identified. All model parameters were estimated with adequate precision (relative standard error <50%). Single dose simulations showed that a previously established analgesic concentration at half maximal effect in adults of 0.37 mg/L, had a mean S-ketorolac concentration of 0.057 mg/L, but a mean S-ketorolac concentration of 0.046 mg/L in infants. To match the effective adult S-ketorolac-concentration (0.057 mg/L) in typical infants, the EC50-racemic should be increased to 0.41 mg/L. CONCLUSION: Enantiomer-specific changes in ketorolac PK yield different concentrations and S- and R-ketorolac ratios between infants and adults at identical racemic concentrations. These PK findings should be considered when studies on maturational pharmacodynamics are considered.


Subject(s)
Ketorolac , Pharmaceutical Preparations , Adult , Anti-Inflammatory Agents, Non-Steroidal , Child , Humans , Infant , Ketorolac Tromethamine , Stereoisomerism
16.
Anesth Analg ; 132(3): 726-734, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33122543

ABSTRACT

BACKGROUND: Optimal analgesic treatment following cardiac surgery is crucial for both patient comfort and successful postoperative recovery. While knowledge of both the pharmacokinetics and pharmacodynamics of analgesics is required to predict optimal drug dosing, models quantifying the pharmacodynamics are scarce. Here, we quantify the pharmacodynamics of morphine by modeling the need for rescue morphine to treat unacceptable pain in 118 patients after cardiac surgery. METHODS: The rescue morphine event data were analyzed with repeated time-to-event (RTTE) modeling using NONMEM. Postoperative pain titration protocol consisted of continuous morphine infusions (median duration 20.5 hours) with paracetamol 4 times daily and rescue morphine in case of unacceptable pain (numerical rating scale ≥4). RESULTS: Patients had a median age of 73 years (interquartile range [IQR]: 63-77) and median bodyweight of 80 kg (IQR: 72-90 kg). Most patients (55%) required at least 1 rescue morphine dose. The hazard for rescue morphine following cardiac surgery was found to be significantly influenced by time after surgery, a day/night cycle with a peak at 23:00 (95% confidence interval [CI], 19:35-02:03) each day, and an effect of morphine concentration with 50% hazard reduction at 9.3 ng·mL-1 (95% CI, 6.7-16). CONCLUSIONS: The pharmacodynamics of morphine after cardiac surgery was successfully quantified using RTTE modeling. Future studies can be used to expand the model to better predict morphine's pharmacodynamics on the individual level and to include the pharmacodynamics of other analgesics so that improved postoperative pain treatment protocols can be developed.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Cardiac Surgical Procedures/adverse effects , Models, Theoretical , Morphine/pharmacokinetics , Pain Management , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Aged , Analgesics, Opioid/administration & dosage , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Morphine/administration & dosage , Pain, Postoperative/diagnosis , Risk Assessment , Risk Factors , Treatment Outcome
17.
Pediatr Crit Care Med ; 22(4): e259-e269, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33031353

ABSTRACT

OBJECTIVES: To compare the pharmacokinetics and pharmacodynamics of IV midazolam after cardiac surgery between children with and without Down syndrome. DESIGN: Prospective, single-center observational trial. SETTING: PICU in a university-affiliated pediatric teaching hospital. PATIENTS: Twenty-one children with Down syndrome and 17 without, 3-36 months, scheduled for cardiac surgery with cardiopulmonary bypass. INTERVENTIONS: Postoperatively, nurses regularly assessed the children's pain and discomfort with the validated COMFORT-Behavioral scale and Numeric Rating Scale for pain. A loading dose of morphine (100 µg/kg) was administered after coming off bypass; thereafter, morphine infusion was commenced at 40 µg/kg/hr. Midazolam was started if COMFORT-Behavioral scale score of greater than 16 and Numeric Rating Scale score of less than 4 (suggestive of undersedation). Plasma midazolam and metabolite concentrations were measured for population pharmacokinetic- and pharmacodynamic analysis using nonlinear mixed effects modeling (NONMEM) (Version VI; GloboMax LLC, Hanover, MD) software. MEASUREMENTS AND MAIN RESULTS: Twenty-six children (72%) required midazolam postoperatively (15 with Down syndrome and 11 without; p = 1.00). Neither the cumulative midazolam dose (p = 0.61) nor the time elapsed before additional sedation was initiated (p = 0.71), statistically significantly differed between children with and without Down syndrome. Population pharmacokinetic and pharmacodynamics analysis revealed no statistically significant differences between the children with and without Down syndrome. Bodyweight was a significant covariate for the clearance of 1-OH-midazolam to 1-OH-glucuronide (p = 0.003). Pharmacodynamic analysis revealed a marginal effect of the midazolam concentration on the COMFORT-Behavioral score. CONCLUSIONS: The majority of children with and without Down syndrome required additional sedation after cardiac surgery. This pharmacokinetic and pharmacodynamic analysis does not provide evidence for different dosing of midazolam in children with Down syndrome after cardiac surgery.


Subject(s)
Cardiac Surgical Procedures , Down Syndrome , Cardiac Surgical Procedures/adverse effects , Child , Down Syndrome/complications , Humans , Hypnotics and Sedatives , Midazolam , Prospective Studies
18.
Pediatr Crit Care Med ; 22(1): 101-113, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33027241

ABSTRACT

OBJECTIVES: To determine timing and cause of death in children admitted to the PICU following return of circulation after out-of-hospital cardiac arrest. DESIGN: Retrospective observational study. SETTING: Single-center observational cohort study at the PICU of a tertiary-care hospital (Erasmus MC-Sophia, Rotterdam, The Netherlands) between 2012 and 2017. PATIENTS: Children younger than 18 years old with out-of-hospital cardiac arrest and return of circulation admitted to the PICU. MEASUREMENTS AND RESULTS: Data included general, cardiopulmonary resuscitation and postreturn of circulation characteristics. The primary outcome was defined as survival to hospital discharge. Modes of death were classified as brain death, withdrawal of life-sustaining therapies due to poor neurologic prognosis, withdrawal of life-sustaining therapies due to refractory circulatory and/or respiratory failure, and recurrent cardiac arrest without return of circulation. One hundred thirteen children with out-of-hospital cardiac arrest were admitted to the PICU following return of circulation (median age 53 months, 64% male, most common cause of out-of-hospital cardiac arrest drowning [21%]). In these 113 children, there was 44% survival to hospital discharge and 56% nonsurvival to hospital discharge (brain death 29%, withdrawal of life-sustaining therapies due to poor neurologic prognosis 67%, withdrawal of life-sustaining therapies due to refractory circulatory and/or respiratory failure 2%, and recurrent cardiac arrest 2%). Compared with nonsurvivors, more survivors had witnessed arrest (p = 0.007), initial shockable rhythm (p < 0.001), shorter cardiopulmonary resuscitation duration (p < 0.001), and more favorable clinical neurologic examination within 24 hours after admission. Basic cardiopulmonary resuscitation event and postreturn of circulation (except for the number of extracorporeal membrane oxygenation) characteristics did not significantly differ between the withdrawal of life-sustaining therapies due to poor neurologic prognosis and brain death patients. Timing of decision-making to withdrawal of life-sustaining therapies due to poor neurologic prognosis ranged from 0 to 18 days (median: 0 d; interquartile range, 0-3) after cardiopulmonary resuscitation. The decision to withdrawal of life-sustaining therapies was based on neurologic examination (100%), electroencephalography (44%), and/or brain imaging (35%). CONCLUSIONS: More than half of children who achieve return of circulation after out-of-hospital cardiac arrest died after PICU admission. Of these deaths, two thirds (67%) underwent withdrawal of life-sustaining therapies based on an expected poor neurologic prognosis and did so early after return of circulation. There is a need for international guidelines for accurate neuroprognostication in children after cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Cause of Death , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Netherlands/epidemiology , Out-of-Hospital Cardiac Arrest/therapy , Retrospective Studies
19.
Pharmacology ; 106(7-8): 384-389, 2021.
Article in English | MEDLINE | ID: mdl-34077940

ABSTRACT

INTRODUCTION: Sufentanil is a potent synthetic opioid used for analgesia in neonates; however, data concerning drug disposition of sufentanil and dosage regimen are sparse in this population. Therefore, the aim of the study was to explore sufentanil disposition and to propose optimal loading and maintenance doses of sufentanil in ventilated full-term neonates. METHODS: Individual sufentanil pharmacokinetic parameters were calculated based on therapeutic drug monitoring data using a 2-compartmental model. Linear regression models were used to explore the covariates. RESULTS: The median (IQR) central volume of distribution (Vdc) and clearance (CL) for sufentanil were 4.7 (4.1-5.4) L/kg and 0.651 (0.433-0.751) L/h/kg, respectively. Linear regression models showed relationship between Vdc (L) and GA (r2 = 0.3436; p = 0.0452) as well as BW (r2 = 0.4019; p = 0.0268). Median optimal sufentanil LD and MD were 2.13 (95% CI: 1.78-2.48) µg/kg and 0.29 (95% CI: 0.22-0.37) µg/kg/h, respectively. Median daily COMFORT-B (IQR) scores ranged from 6 to 23 while no significant relationship between pharmacokinetic parameters and COMFORT-B scores was found. DISCUSSION/CONCLUSION: Body weight and gestational age were found as weak covariates for sufentanil distribution, and the dosage regimen was developed for a prospective trial.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Models, Biological , Respiration, Artificial , Sufentanil/pharmacokinetics , Analgesics, Opioid/administration & dosage , Body Weight , Dose-Response Relationship, Drug , Drug Monitoring/methods , Female , Gestational Age , Humans , Infant, Newborn , Male , Retrospective Studies , Sufentanil/administration & dosage , Tissue Distribution
20.
Dev Psychobiol ; 63(8): e22210, 2021 12.
Article in English | MEDLINE | ID: mdl-34813103

ABSTRACT

The influence of neonatal experiences upon later-life affective behavior is increasingly recognized, but the reported effects on anxiety are often contradictory. The observed effect may depend upon the type of anxiety (state or trait) affected. The current study aims to investigate whether neonatal repetitive needle pricking alters anxiety behavior in adulthood, by assessing both state and trait anxiety in rats. Sprague-Dawley rat pups received four unilateral needle pricks per day, while controls received four tactile stimuli or were left completely undisturbed during the first postnatal week. Mechanical sensitivity was assessed in the neonatal phase and throughout the development. State anxiety was assessed in the open field test and trait anxiety in the elevated zero maze. The results show that repetitive needle pricking leads to acute mechanical hypersensitivity, but does not affect baseline mechanical sensitivity throughout development. In adulthood, animals previously exposed to neonatal procedural pain (including repetitive handling and removal from litter) showed lower state anxiety but did not differ in trait anxiety, as compared with the undisturbed controls. These findings indicate that early-life procedural pain decreases state but not trait anxiety behavior in later life in a rodent model of repetitive needle pricking.


Subject(s)
Pain, Procedural , Animals , Animals, Newborn , Anxiety/psychology , Rats , Rats, Sprague-Dawley , Touch
SELECTION OF CITATIONS
SEARCH DETAIL