Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bioorg Med Chem Lett ; 95: 129484, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37716415

ABSTRACT

Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.

2.
J Pharmacol Sci ; 153(4): 232-242, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973221

ABSTRACT

A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Hypoxia/metabolism , RNA, Small Interfering , Computational Biology , Pancreatic Neoplasms
3.
Mol Pharm ; 17(4): 1049-1058, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32068412

ABSTRACT

Camptothecin possesses broad antitumor spectra on various cancers. In spite of its marked tumor-suppressing potency, camptothecin is too hydrophobic to be solved in water and therefore not currently in clinical use. CPT-11 (irinotecan) is one of the hydrophilic analogues of camptothecin and widely prescribed. However, its water solubility is still low and furthermore evokes severe diarrhea. Therefore, we designed and synthesized novel highly hydrophilic camptothecin derivatives by conjugating SN38 with branched glycerol trimer (SN38-BGL), which we have been developing as a unique strategy to endow hydrophobic molecule with much hydrophilicity, to maximize the benefit of CPT-11 and minimize the adverse effects. The SN38-BGLs exhibited equivalent or slightly stronger tumor-suppressing effects in murine xenograft human lung cancer models compared to CPT-11. However, neither early- nor late-onset diarrhea was observed when SN38-BGL was administered. Heights of villi in jejunum and ileum were bigger than those from CPT-11-treated mice, indicating that SN38-BGL is less harmful than CPT-11. Ex vivo digestion by liver microsome did not yield SN38 but a couple of other molecules against our expectations, which suggests the involvement of other active metabolites than SN38 and may explain the differences. Hence, SN38-BGLs can be a novel hydrophilic camptothecin derivative without causing severe diarrhea.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/adverse effects , Camptothecin/pharmacology , Diarrhea/prevention & control , Glycerol/chemistry , Lung Neoplasms/drug therapy , A549 Cells , Animals , Camptothecin/chemistry , Cell Line, Tumor , Disease Models, Animal , Heterografts/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Irinotecan/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays/methods
4.
Chem Commun (Camb) ; 58(17): 2918-2921, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35138311

ABSTRACT

Intramolecular S-acylation of a thiol-installed threonine with a thioester unit, followed by S-O acyl transfer and subsequent desulphurisation, allows the synthesis of lactone peptides. A protocol has been developed enabling the cyclisation of a linear peptide, a reaction which has not been achieved by conventional methods.


Subject(s)
Lactones/chemistry , Peptides/chemical synthesis , Sulfhydryl Compounds/chemistry , Threonine/chemistry , Molecular Structure , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL