Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38964329

ABSTRACT

The entry of coronaviruses is initiated by spike recognition of host cellular receptors, involving proteinaceous and/or glycan receptors. Recently, TMPRSS2 was identified as the proteinaceous receptor for HCoV-HKU1 alongside sialoglycan as a glycan receptor. However, the underlying mechanisms for viral entry remain unknown. Here, we investigated the HCoV-HKU1C spike in the inactive, glycan-activated, and functionally anchored states, revealing that sialoglycan binding induces a conformational change of the NTD and promotes the neighboring RBD of the spike to open for TMPRSS2 recognition, exhibiting a synergistic mechanism for the entry of HCoV-HKU1. The RBD of HCoV-HKU1 features an insertion subdomain that recognizes TMPRSS2 through three previously undiscovered interfaces. Furthermore, structural investigation of HCoV-HKU1A in combination with mutagenesis and binding assays confirms a conserved receptor recognition pattern adopted by HCoV-HKU1. These studies advance our understanding of the complex viral-host interactions during entry, laying the groundwork for developing new therapeutics against coronavirus-associated diseases.

2.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32526208

ABSTRACT

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Models, Chemical , Models, Molecular , RNA, Viral/metabolism , SARS-CoV-2 , Transcription, Genetic , Virus Replication
3.
Cell ; 176(3): 636-648.e13, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30682372

ABSTRACT

Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/ultrastructure , Adamantane/analogs & derivatives , Adamantane/metabolism , Antitubercular Agents/chemistry , Biological Transport , Drug Delivery Systems , Drug Design , Ethylenediamines/metabolism , Humans , Membrane Proteins/metabolism , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/ultrastructure , Phenylurea Compounds/metabolism , Rimonabant/metabolism , Tuberculosis/microbiology
4.
Mol Cell ; 83(12): 2137-2147.e4, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37244256

ABSTRACT

Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the ß subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.


Subject(s)
Adenosine Triphosphate , Proton-Translocating ATPases , Humans , Cryoelectron Microscopy , Adenosine Triphosphate/metabolism , Proton-Translocating ATPases/chemistry , Protein Conformation
5.
Nature ; 622(7982): 376-382, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696289

ABSTRACT

Nirmatrelvir is a specific antiviral drug that targets the main protease (Mpro) of SARS-CoV-2 and has been approved to treat COVID-191,2. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations3. The molecular mechanisms for this observed resistance are unknown. Here we combined biochemical and structural methods to demonstrate that alterations at the substrate-binding pocket of Mpro can allow SARS-CoV-2 to develop resistance to nirmatrelvir in two distinct ways. Comprehensive studies of the structures of 14 Mpro mutants in complex with drugs or substrate revealed that alterations at the S1 and S4 subsites substantially decreased the level of inhibitor binding, whereas alterations at the S2 and S4' subsites unexpectedly increased protease activity. Both mechanisms contributed to nirmatrelvir resistance, with the latter compensating for the loss in enzymatic activity of the former, which in turn accounted for the restoration of viral replicative fitness, as observed previously3. Such a profile was also observed for ensitrelvir, another clinically relevant Mpro inhibitor. These results shed light on the mechanisms by which SARS-CoV-2 evolves to develop resistance to the current generation of protease inhibitors and provide the basis for the design of next-generation Mpro inhibitors.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Lactams , Leucine , Nitriles , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Binding Sites/drug effects , Binding Sites/genetics , Mutation , Substrate Specificity , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Virus Replication/drug effects , Drug Design , Proline
6.
Nature ; 582(7811): 289-293, 2020 06.
Article in English | MEDLINE | ID: mdl-32272481

ABSTRACT

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Models, Molecular , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cells, Cultured/virology , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Drug Design , Drug Evaluation, Preclinical , Humans , Pandemics , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 120(35): e2307625120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603751

ABSTRACT

Trehalose plays a crucial role in the survival and virulence of the deadly human pathogen Mycobacterium tuberculosis (Mtb). The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the sole pathway for trehalose to enter Mtb. The substrate-binding protein, LpqY, which forms a stable complex with the translocator SugABC, recognizes and captures trehalose and its analogues in the periplasmic space, but the precise molecular mechanism for this process is still not well understood. This study reports a 3.02-Å cryoelectron microscopy structure of trehalose-bound Mtb LpqY-SugABC in the pretranslocation state, a crystal structure of Mtb LpqY in a closed form with trehalose bound and five crystal structures of Mtb LpqY in complex with different trehalose analogues. These structures, accompanied by substrate-stimulated ATPase activity data, reveal how LpqY recognizes and binds trehalose and its analogues, and highlight the flexibility in the substrate binding pocket of LpqY. These data provide critical insights into the design of trehalose analogues that could serve as potential molecular probe tools or as anti-TB drugs.


Subject(s)
Mycobacterium tuberculosis , Humans , Cryoelectron Microscopy , Trehalose , ATP-Binding Cassette Transporters , Molecular Probes
8.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252995

ABSTRACT

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Subject(s)
Mycobacterium tuberculosis , Humans , Galactans , Pentosyltransferases/genetics
9.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35380892

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Polyproteins/chemistry , Protein Conformation , Proteolysis , SARS-CoV-2/enzymology , Substrate Specificity/genetics
10.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33853951

ABSTRACT

Encapsulins containing dye-decolorizing peroxidase (DyP)-type peroxidases are ubiquitous among prokaryotes, protecting cells against oxidative stress. However, little is known about how they interact and function. Here, we have isolated a native cargo-packaging encapsulin from Mycobacterium smegmatis and determined its complete high-resolution structure by cryogenic electron microscopy (cryo-EM). This encapsulin comprises an icosahedral shell and a dodecameric DyP cargo. The dodecameric DyP consists of two hexamers with a twofold axis of symmetry and stretches across the interior of the encapsulin. Our results reveal that the encapsulin shell plays a role in stabilizing the dodecameric DyP. Furthermore, we have proposed a potential mechanism for removing the hydrogen peroxide based on the structural features. Our study also suggests that the DyP is the primary cargo protein of mycobacterial encapsulins and is a potential target for antituberculosis drug discovery.


Subject(s)
Bacterial Proteins/ultrastructure , Mycobacterium smegmatis/ultrastructure , Peroxidases/ultrastructure , Bacterial Proteins/metabolism , Cryoelectron Microscopy/methods , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/pathogenicity , Organelles/metabolism , Organelles/physiology , Peroxidases/metabolism
11.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876763

ABSTRACT

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


Subject(s)
Bacterial Proteins/chemistry , Electron Transport Complex III/chemistry , Flavoproteins/chemistry , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/metabolism , Binding Sites , Cryoelectron Microscopy , Electron Transport Complex III/metabolism , Flavoproteins/metabolism , Molecular Dynamics Simulation , Protein Binding , Ubiquinone/chemistry , Ubiquinone/metabolism
12.
Biochem Biophys Res Commun ; 497(1): 214-219, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29428731

ABSTRACT

Increasing drug resistance in Mycobacterium tuberculosis (Mtb) has necessitated the design of new anti-mycobacterial drugs with novel targets. Thiazole synthase (ThiG) is an essential enzyme and a potential drug target in Mtb that catalyzes the formation of the thiazole moiety of thiamin-pyrophosphate from 1-deoxy-d-xylulose-5-phosphate (DXP), dehydroglycine and ThiS-thiocarboxylate. To uncover the catalysis mechanism and design potent and selective anti-mycobacterial compounds targeting ThiG, we determined the crystal structure of MtbThiG at 1.5 Šresolution, for the first time, snapshotting a covalently bound substrate trapped in the catalytic pocket. The structure showed a (ß/α)8 barrel overall fold as well as the dimer form of MtbThiG existing in solution. In the central pocket, Lys98 is the key residue forming a protonated carbinolamine intermediate, a functional Schiff base precursor, with DXP. The carbinolamine is further stabilized by active site residues mainly through hydrogen bonds. This work revealed that a protonated carbinolamine is initially formed and then it is dehydrated to the imine form of Schiff base during the early catalysis steps. Our research will provide useful information for understanding the ThiG function and lay the basis for future drug design by targeting this essential protein.


Subject(s)
Lyases/chemistry , Models, Chemical , Models, Molecular , Mycobacterium tuberculosis/enzymology , Binding Sites , Catalysis , Computer Simulation , Enzyme Activation , Lyases/ultrastructure , Protein Binding , Protein Conformation , Protein Folding , Protein Multimerization
13.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1800-1807, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28943401

ABSTRACT

l-arginine is used as a source of both carbon and nitrogen in Mycobacterium tuberculosis (Mtb) and its biosynthesis is essential for the pathogen's survival. MtbArgA (Rv2747) catalyzes the initial step in l-arginine biosynthesis by transferring an acetyl group from acetyl coenzyme A (AcCoA) to l-glutamate. MtbArgA is a class III N-acetylglutamate synthase (NAGS) with no structural information. Here, we solved the crystal structure of MtbArgA complexed with AcCoA and l-glutamate. The overall structure adopts a classic fold of the GCN5-related N-acetyltransferase (GNAT) family, characterized by a "V"-shaped cleft and ß-bulge, but uses distinct residues for the binding and reaction of AcCoA. In particular, its activity depends on dimerization to form a deep, vast pocket for l-glutamate binding. Interestingly, in the structure, l-glutamate binds at a site far away from AcCoA, implying a mechanism of separate capture and catalysis. Additionally, based on a docking model of l-glutamate at the catalytic site, a one-step sequential mechanism was proposed for enzymatic catalysis. Important sites for substrate binding and catalysis were also evaluated by site-directed mutagenesis study and activity analysis. The unique features of the MtbArgA structure will provide useful insights for inhibitor design and anti-tuberculosis drug discovery.


Subject(s)
Acetyltransferases/chemistry , Arginine/biosynthesis , Mycobacterium tuberculosis/enzymology , Acetyltransferases/antagonists & inhibitors , Binding Sites , Biocatalysis , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary
14.
EMBO J ; 29(15): 2566-76, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20628353

ABSTRACT

CCR4, an evolutionarily conserved member of the CCR4-NOT complex, is the main cytoplasmic deadenylase. It contains a C-terminal nuclease domain with homology to the endonuclease-exonuclease-phosphatase (EEP) family of enzymes. We have determined the high-resolution three-dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X-ray crystallography using the single-wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete alpha/beta sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg(2+)-dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.


Subject(s)
Poly A/chemistry , Poly A/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism , Biocatalysis , Crystallography, X-Ray , DNA, Single-Stranded/metabolism , Humans , Magnesium/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , Ribonucleases/genetics , Substrate Specificity
15.
Sci Adv ; 10(12): eadk8521, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507491

ABSTRACT

The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Cryoelectron Microscopy , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism
16.
Cell Death Dis ; 15(6): 458, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937437

ABSTRACT

SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Humans , Animals , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mice , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , HEK293 Cells , Mice, Inbred BALB C , Protein Binding , Female
17.
Structure ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38925121

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which spreads rapidly all over the world. The main protease (Mpro) is significant to the replication and transcription of viruses, making it an attractive drug target against coronaviruses. Here, we introduce a series of novel inhibitors which are designed de novo through structure-based drug design approach that have great potential to inhibit SARS-CoV-2 Mproin vitro. High-resolution structures show that these inhibitors form covalent bonds with the catalytic cysteine through the novel dibromomethyl ketone (DBMK) as a reactive warhead. At the same time, the designed phenyl group beside the DBMK warhead inserts into the cleft between H41 and C145 through π-π stacking interaction, splitting the catalytic dyad and disrupting proton transfer. This unique binding model provides novel clues for the cysteine protease inhibitor development of SARS-CoV-2 as well as other pathogens.

18.
Nat Struct Mol Biol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548954

ABSTRACT

Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.

19.
Commun Biol ; 6(1): 694, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407698

ABSTRACT

SARS-CoV-2 poses an unprecedented threat to the world as the causative agent of the COVID-19 pandemic. Among a handful of therapeutics developed for the prevention and treatment of SARS-CoV-2 infection, ensitrelvir is the first noncovalent and nonpeptide oral inhibitor targeting the main protease (Mpro) of SARS-CoV-2, which recently received emergency regulatory approval in Japan. Here we determined a 1.8-Å structure of Mpro in complex with ensitrelvir, which revealed that ensitrelvir targets the substrate-binding pocket of Mpro, specifically recognizing its S1, S2, and S1' subsites. Further, our comprehensive biochemical and structural data have demonstrated that even though ensitrelvir and nirmatrelvir (an FDA-approved drug) belong to different types of Mpro inhibitors, both of them remain to be effective against Mpros from all five SARS-CoV-2 variants of concern, suggesting Mpro is a bona fide broad-spectrum target. The molecular mechanisms uncovered in this study provide basis for future inhibitor design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics
20.
Protein Cell ; 14(6): 448-458, 2023 06 07.
Article in English | MEDLINE | ID: mdl-36882106

ABSTRACT

The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.


Subject(s)
Mycobacterium tuberculosis , Siderophores , Siderophores/chemistry , Siderophores/metabolism , Iron/metabolism , Mycobacterium tuberculosis/metabolism , Cryoelectron Microscopy , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters
SELECTION OF CITATIONS
SEARCH DETAIL