Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Mikrochim Acta ; 191(6): 331, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744722

ABSTRACT

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.


Subject(s)
Colorimetry , Limit of Detection , Metal-Organic Frameworks , Salmonella enterica , Colorimetry/methods , Salmonella enterica/isolation & purification , Salmonella enterica/chemistry , Metal-Organic Frameworks/chemistry , Food Microbiology/methods , Food Contamination/analysis , Peroxidase/chemistry
2.
Microb Pathog ; 179: 106098, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028686

ABSTRACT

Citrobacter freundii is an important foodborne pathogen that can cause urethritis, bacteremia, necrotizing abscess, and meningitis in infants. In this study, a gas-producing isolate from vacuum-packed meat products was identified as C. freundii by 16S rDNA. In addition, a new virulent phage YZU-L1, which could specifically lyse C. freundii, was isolated from sewage samples in Yangzhou. Transmission electron microscopy showed that phage YZU-L1 had a polyhedral head of 73.51 nm in diameter and a long tail of 161.15 nm in length. According to phylogenetic analysis employing the terminase large subunit, phage YZU-L1 belonged to the Demerecviridae family and the Markadamsvirinae subfamily. The burst size was 96 PFU/cell after 30 min of latent period and 90 min of rising period. Phage YZU-L1 could maintain high activity at pH of 4-13, and resist 50 °C for up to 60 min. The complete genome of YZU-L1 was 115,014 bp double-stranded DNA with 39.94% G + C content, encoding 164 open reading frames (ORFs), without genes encoding for virulence, antibiotic resistance, or lysogenicity. Phage YZU-L1 treatment significantly reduced the viable bacterial count of C. freundii in a sterile fish juice model, which is expected to be a natural agent for the biocontrol of C. freundii in foods.


Subject(s)
Bacteriophages , Meat Products , Animals , Bacteriophages/genetics , Citrobacter freundii/genetics , Phylogeny , DNA , Genome, Viral
3.
Microb Pathog ; 174: 105948, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36526034

ABSTRACT

Vibrio mimicus is a zoonotic pathogen that is widely distributed in aquatic habitats/environments (marine coastal water, estuaries, etc). The development of biocontrol agents for V. mimicus is imperative for the prevention and control of aquatic animal diseases and human food-borne infections. In this study, a broad-spectrum bacteriophage Vmp-1 was isolated from dealt aquatic product in a local market by double-layer agar plate method using V. mimicus CICC21613 as the host bacteria. Results indicated that Vmp-1, which belongs to the family Podoviridae, showed good pH tolerance (pH 3.0-12.0) and thermal stability (30-50 °C). The optimal multiplicity of infection (MOI) of Vmp-1 was 0.001 for a 20-min incubation and 100-min lysis period. Vmp-1 effectively controlled V. mimicus CICC21613 in LBS model (MOI = 0.0001, 0.001, 0.01, 0.1, 1) within 8 h. The full length of the Vmp-1 genome was 43,312 bp, with average GC content of 49.5%, and a total of 44 protein-coding regions. This study provides a novel phage strain that has the highest homology with vB_VpP_HA5 (GenBank: OK585159.1, 95.96%) for the development of biocontrol agents for V. mimicus.


Subject(s)
Bacteriophages , Vibrio mimicus , Vibrio , Animals , Humans , Bacteriophages/genetics , Genomics , Vibrio/genetics , Vibrio mimicus/genetics , Membrane Proteins/metabolism
4.
Microb Pathog ; 162: 105375, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34974119

ABSTRACT

Enterobacter hormaechei is a zoonotic bacteria that may cause respiratory diseases in animals and neonatal sepsis in humans. Bacteriophages are increasingly considered as potential biocontrol agents to control pathogens in the food industry. In this study, five E. hormaechei virulent phages, named as Ehp-YZU08, Ehp-YZU10, Ehp-YZU9-1, Ehp-YZU9-2 and Ehp-YZU9-3, were isolated from sewage in China and analyzed for their biological and whole-genome characteristics, and a comparative genomic analysis was performed to study the functional genes and phylogenetic evolution of phages. The results showed that four of the phage strains belong to the Podoviridae family and one belongs to the Myoviridae family. The burst sizes were 70-283 PFU/cell after a latent period of 5-40 min. Phages were able to survive in a pH range of 5-10 and resist temperatures up to 60 °C for 60 min. The sequencing results showed that the full length of the genomes of the five phages ranged from 39,502 to 173,418 bp. Each phage contained multiple genes related to phage replication, and genes related to bacterial virulence or drug resistance were not found. The five phages belonged to three different groups by a construction of a phylogenetic tree, and the significant genetic evolutionary distance from each E. hormaechei phage was observed. The inhibition assay showed that all five phages could completely inhibit the growth of E. hormaechei at 37 °C within 8 h, suggesting that the phages in this study have great potential for the development of biocontrol agents against E. hormaechei in the food industry.


Subject(s)
Bacteriophages , Animals , Bacteriophages/genetics , Enterobacter , Genome, Viral , Genomics , Humans , Phylogeny
5.
J Appl Microbiol ; 133(4): 2107-2121, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34932868

ABSTRACT

Mixed-species biofilms represent the most frequent actual lifestyles of microorganisms in food processing environments, and they are usually more resistant to control methods than single-species biofilms. The persistence of biofilms formed by foodborne pathogens is believed to cause serious human diseases. These challenges have encouraged researchers to search for novel, natural methods that are more effective towards mixed-species biofilms. Recently, the use of bacteriophages to control mixed-species biofilms have grown significantly in the food industry as an alternative to conventional methods. This review highlights a comprehensive introduction of mixed-species biofilms formed by foodborne pathogens and their enhanced resistance to anti-biofilm removal strategies. Additionally, several methods for controlling mixed-species biofilms briefly focused on applying bacteriophages in the food industry have also been discussed. This article concludes by suggesting that using bacteriophage, combined with other 'green' methods, could effectively control mixed-species biofilms in the food industry.


Subject(s)
Bacteriophages , Biofilms , Food Handling , Food Microbiology , Food-Processing Industry , Humans
6.
Microb Pathog ; 152: 104767, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33524565

ABSTRACT

Enterobacter hormaechei is a foodborne pathogen responsible for neonatal sepsis in humans and respiratory disease in animals. In this work, a new virulent phage (P.A-5) infecting E. hormaechei was isolated from domestic sewage samples and characterized. Transmission electron microscopy revealed that P.A-5 belonged to the family Myoviridae having a head size of 77.53 nm and a tail length of 72.24 nm. The burst size was 262 PFU/cell after a latent period of 20 min. Phage P.A-5 was able to survive in a pH range of 4-9 and resist temperatures up to 55 °C for 60 min. The genome sequence of P.A-5 had homology most similar to that of Shigellae phage MK-13 (GenBank: MK509462.1). Pork artificially contaminated with E. hormaechei was used as a model to evaluate the potential of P.A-5. The results clearly showed that P.A-5 treatment can completely inhibit E. hormaechei growth in pork within 8 h, indicating the potential use of P.A-5 as a biocontrol agent for E. hormaechei.


Subject(s)
Bacteriophages , Siphoviridae , Animals , Bacteriophages/genetics , Enterobacter , Genome, Viral , Genomics , Humans , Infant, Newborn , Myoviridae/genetics
7.
Anal Bioanal Chem ; 413(5): 1485-1492, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33462660

ABSTRACT

In this work, an ultrasensitive sensing system based on fluorescent carbon dots (CDs) was developed for the tartrazine (Tar) determination. The CDs were prepared via a simple one-pot hydrothermal method with m-phenylenediamine as the only precursor. The physical and chemical properties were in detail characterized by transmission electron microscopy (TEM), MALDI-TOF MS, UV-vis absorption and photoluminescence (PL) spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy (FTIR). Upon exposure to Tar, the fluorescence of CDs was efficiently quenched via the dynamic interaction between CDs and Tar as well as the inner filter effect (IFE). With this information, the CDs were proposed as a fluorescence probe for Tar detection. It was found that CDs had high sensitivity and selectivity for Tar sensing, and the linear relationship was observed in the range of 0.01-25.0 µM with the corresponding detection limit (3σ/k) of 12.4 nM, which is much more sensitive than any of the existed CD-based sensing platform. The investigated sensing system was finally utilized for Tar sensing in various food matrices with a high degree of accuracy. The spiked recoveries were in a range of 96.4-105.2%, and the relative standard deviations (RSDs) were lower than 4.13%. This work highlights the great application prospects of CDs for Tar sensing in a rapid, simple, and sensitive way.


Subject(s)
Carbon/chemistry , Food Analysis/methods , Food Coloring Agents/analysis , Nanoparticles/chemistry , Tartrazine/analysis , Fluorescent Dyes/chemistry , Limit of Detection , Nanoparticles/ultrastructure , Spectrometry, Fluorescence/methods
8.
Food Microbiol ; 86: 103330, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703878

ABSTRACT

Pickle is a type of mildly lactic acid fermented vegetable and is a traditional dish favored in China, Japan, and Korea. Corruption of spoilage bacteria and accumulation of nitrite during vegetable fermentation are common problems that affect the pickle industry and consumer health. In this work, cucumber juice was used as a vegetable model to study the dominant mesophilic aerobic bacteria (MAB) producing nitrite during pickle fermentation. Virulent phages infecting the dominant MABs combined with Lactobacillus plantarum M6 were used to control these bacteria. Enterobacter cloacae and Pseudomonas fluorescens are the dominant MABs in the fermentation of cucumber juice containing 4% or 8% NaCl, with isolation percentages reaching 30.6% and 23.1%, respectively. Virulent phages PspYZU5415 and EcpYZU01 were isolated using P. fluorescens J5415 and E. cloacae J01 as the host bacteria, respectively. These two phages show a broad host range and strong lytic activity, and their genomes contain no toxins and antibiotic resistance genes. PspYZU5415 and EcpYZU01 were combined into a cocktail (designated as Phage MIX) that effectively inhibits the growth of E. cloacae and P. fluorescens in cucumber juice with different salt concentrations. PhageMIX combined with L. plantarum M6 decreased the counts of P. mendocina and E. cloacae to undetectable levels at 48 h during the fermentation of cucumber juice artificially contaminated with P. mendocina and E. cloacae. In addition, nitrite content increased to 11.3 mg/L at 20 h and then degraded completely at 36 h. By contrast, P. mendocina and E. cloacae remained in the groups without PhageMIX during fermentation (0-48 h). Nitrite content rapidly increased to 65.7 mg/L at 12 h and then decreased to 21.6 mg/L at 48 h in the control group. This study suggests that PhageMIX combined with lactic acid bacterial strains can be used as an ecological starter for controlling the dominant MABs P. mendocina and E. cloacae and for reducing nitrate production during the early stage of pickle fermentation.


Subject(s)
Bacteriophages/physiology , Bacteriophages/pathogenicity , Cucumis sativus/microbiology , Enterobacter cloacae/virology , Food Microbiology/methods , Pseudomonas fluorescens/virology , Vegetables/microbiology , Aerobiosis , Bacteriophages/genetics , Bacteriophages/isolation & purification , Cucumis sativus/metabolism , Enterobacter cloacae/metabolism , Fermentation , Fermented Foods/microbiology , Host Specificity , Lactobacillus plantarum/metabolism , Nitrites/metabolism , Pseudomonas fluorescens/metabolism
10.
Se Pu ; 42(3): 225-233, 2024 Mar 08.
Article in Zh | MEDLINE | ID: mdl-38503699

ABSTRACT

Algal toxins are secondary metabolites produced by harmful algae; these metabolites are characterized with strong toxicity, diverse structure and bioaccumulation. Aquatic organisms that feed on harmful algae can accumulate algal toxins in their bodies, and the consumption of these organisms by humans can cause symptoms of paralysis, diarrhea, and even death. The onset of poisoning can occur within as little as 30 min; in many cases, no suitable antidote for algal toxins is available. Thus, algal toxins present significant threats to human health, the aquaculture industry, and aquatic ecosystems. Because the potential risks of algal toxins are a critical issue, these toxins have become a research hotspot. The water environment and various types of aquatic products should be monitored and analyzed to ensure their safety. However, because of possible matrix effects and the low content of algal toxins in actual samples, an efficient pretreatment method is necessary prior to instrumental analyses. Efficient sample pretreatment techniques can not only reduce or eliminate interferences from the sample matrix during analysis but also enrich the target analytes to meet the detection limit of the analytical instrument, thereby ensuring the sensitivity and accuracy of the detection method. In recent years, sample pretreatment techniques such as solid-phase extraction (SPE), solid-phase microextraction (SPME), magnetic SPE (MSPE), dispersive SPE (DSPE), and pipette tip-based SPE (PT-SPE) have gained wide attention in the field of algal-toxin separation and analysis. The performance of these pretreatment techniques largely depends on the characteristics of the extraction materials. Given the diverse physicochemical properties of algal toxins, including their different molecular sizes, hydrophobicity/hydrophilicity, and charges, the design and preparation of materials suitable for algal-toxin extraction is an essential undertaking. The optimal extraction material should be capable of reversible algal-toxin adsorption and preferably possess a porous structure with a large surface area to allow for high recovery rates and good interfacial contact with the toxins. Additionally, the extraction material should exhibit good chemical stability in the sample solution and elution solvent within the working pH range; otherwise, it may dissolve or lose its functional groups. Many research efforts have sought to develop novel adsorbent materials with these properties in the separation and analysis of algal toxins, focusing on carbon-based materials, metal organic frameworks (MOFs), covalent organic frameworks (COFs), molecularly imprinted polymers (MIPs), and their functionalized counterparts. Carbon-based materials, MOFs, and COFs have advantages such as large surface areas and abundant adsorption sites. These extraction materials are widely used in the separation and analysis of target substances in complex environmental, biological, and food samples owing to their excellent performance and unique microstructure. They are also the main adsorbents used for the extraction of algal toxins. These extraction materials play an essential role in the extraction of algal toxins, but they also present a number of limitations: (1) Carbon-based materials, MOFs, and COFs have relatively poor selective-adsorption ability towards target substances; (2) Most MOFs are unstable in aqueous solutions and challenging to apply during extraction from water-based sample solutions; (3) COFs mainly consist of lightweight elements, rendering them difficult to completely separate from sample solutions using centrifugal force, which limits their application range; (4) Although MIPs have good selectivity, issues such as template-molecule loss, slow mass-transfer rates, and low adsorption capacity must be addressed. Therefore, the design and preparation of novel functionalized extraction materials specifically tailored for algal toxins and studies on new composite extraction materials are highly desirable. This article collects representative literature from domestic and international research on algal-toxin analysis over the past decade, summarizes the relevant findings, categorizes the applications of novel functional materials in algal-toxin-extraction processes, and provides an outlook on their future development prospects.


Subject(s)
Aquaculture , Ecosystem , Humans , Adsorption , Carbon , Water , Solid Phase Extraction
11.
Biofilm ; 5: 100118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37125395

ABSTRACT

The continuous growth of pathogenic microorganisms and associated biofilms poses severe public health challenges, particularly in food and clinical environments. However, these difficulties have enabled scientists to develop novel and safe methods for combating pathogens. The use of biofilms produced by lactic acid bacteria (LAB) against pathogenic bacteria has recently gained popularity. This review provides an in-depth look at LAB biofilms, their distribution, and mechanisms of action against pathogenic bacteria. More importantly, the bioactive substances produced by LAB-forming biofilm may be active against undesirable microorganisms and their products, which is of great interest in improving human health. Therefore, this review implies that a combination of LAB biofilms and other LAB products like bacteriocins could provide viable alternatives to traditional methods of combating pathogenic microorganisms and their biofilms.

12.
Food Chem ; 429: 136890, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37499514

ABSTRACT

A paper-based assay for visualization of auramine O (AO) was for the first time established by using CFMs as a ratiometric fluorescent probe (RFP). The CFMs were melamine formaldehyde microspheres (MFMs) incorporated with carbon dots (CDs), where the CDs species as sensing units and MFMs as a signal amplification carrier. The proposed RFP can quantitatively measure AO content from 0.0 to 10.0 µM and exhibited an ultralow limit of detection (LOD, 15.7 nM). In particular, obvious luminescence color change of CFMs from blue to green was perceived with naked-eyes and therefore, a solution-based and a paper-based visualization platform were respectively proposed for on-site visual detection of AO with LODs of 1.15 µM and 0.83 µM, separately. Finally, those fluorescence methods were adopted in sensitively quantitative measurement of AO within various food and drug samples, providing new prospects for analysts and technical support in food quality monitoring.


Subject(s)
Carbon , Quantum Dots , Benzophenoneidum , Microspheres , Fluorescent Dyes
13.
Food Chem ; 404(Pt A): 134395, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36244071

ABSTRACT

In this work, an ultrasensitive and convenient method was established for chlorogenic acid (CGA) determination based on fluorescence quenching of carbon dots (CDs). The CDs were prepared by hydrothermal heating of citric acid and p-phenylenediamine. The proposed CDs-based sensing platform showed high selectivity and sensitivity towards CGA detection. Under optimal working conditions, the fluorescence signals of CDs decreased with increasing of CGA contents and presented linear response to CGA content in two ranges of 0.01-0.1 and 0.1-20.0 µM. The detection limits were as low as 8.87 nM and 0.12 µM. The proposed method was successfully applied to analyze CGA in real food samples. The recoveries were between 98.9 % and 106.7 % and the relative standard deviations (RSDs) were below 3.28 %. This work highlights the construction of a facial, simple, economic and highly sensitive fluorescence sensing system for CGA detection with promising application prospects in food analysis.


Subject(s)
Carbon , Quantum Dots , Chlorogenic Acid , Spectrometry, Fluorescence/methods , Fluorescent Dyes
14.
Anal Chim Acta ; 1264: 341310, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37230726

ABSTRACT

Inorganic arsenic pollution in water spreads all over the world, tremendously threatening environmental safety and human health. Herein, versatile dodecyl trimethyl ammonium bromide modified γ-FeOOH (DTAB-γ-FeOOH) was prepared for sportive removal and visual determination of As(Ⅴ) in water. DTAB-γ-FeOOH displays a nanosheet-like structure with a high specific surface area calculated as 166.88 m2 g-1. Additionally, DTAB-γ-FeOOH shows peroxidase-mimicking feature, which can catalyze colorless TMB to generate blue oxidized TMB (TMBox) in presence of H2O2. Removal experiments show that DTAB-γ-FeOOH exhibits good As(Ⅴ) removal efficiency because modification of DTAB makes γ-FeOOH carry abundant positive charges, improving affinity between DTAB-γ-FeOOH and As(Ⅴ). It is found that theoretical maximum adsorption capacity is up to 126.91 mg g-1. Moreover, DTAB-γ-FeOOH can resist interference of most of co-existing ions. After that, As(Ⅴ) was detected based on peroxidase-like DTAB-γ-FeOOH. As(Ⅴ) can be adsorbed onto DTAB-γ-FeOOH surface, markedly inhibiting its peroxidase-like activity. Based on it, As(Ⅴ) ranging from 1.67 to 3333.33 µg L-1 can be well detected, with a low LOD (0.84 µg L-1). The successful sorptive removal and visual determination of As(Ⅴ) from real environmental water indicated that DTAB-γ-FeOOH has great potential in the treatment of As(Ⅴ)-containing environment water.

15.
J Fungi (Basel) ; 9(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37998864

ABSTRACT

Three new phlegmaciod species of Thaxterogaster, T. borealicremeolinus, T. rufopurpureus, and T. sinopurpurascens spp. nov., from subtropical China were described based on their morphological characteristics and molecular data. Thaxterogaster borealicremeolinus belongs to the sect. Cremeolinae and differs from the other species in this section in its larger basidiospores and its habitat in the Northern Hemisphere associated with Quercus sp. trees. Thaxterogaster rufopurpureus and T. sinopurpurascens belong to sect. Purpurascentes, in which T. rufopurpureus is characterized by a pileus with a reddish-brown coloration when mature and a clavate stipe, while T. sinopurpurascens is characterized by a violet basidiomata, except for a greyish orange to brown pileus, the distinctly marginate bulb of its stipe, and its distribution in subtropical China. The phylogenetic analyses were performed based on nrITS, and detailed descriptions of the new species are provided herein.

16.
Microbiol Res ; 275: 127461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499310

ABSTRACT

Owing to the threats that Salmonella poses to public health and the abuse of antimicrobials, bacteriophage therapy against Salmonella is experiencing a resurgence. Although several phages have been reported as safe and efficient for controlling Salmonella, the genetic diversity and relatedness among Salmonella phages remain poorly understood. In this study, whole-genome sequences of 91 Salmonella bacteriophages were obtained from the National Center for Biological Information genome database. Phylogenetic analysis, mosaic structure comparisons, gene content analysis, and orthologue group clustering were performed. Phylogenetic analysis revealed four singletons and two major lineages (I-II), including five subdividing clades, of which Salmonella phages belonging to morphologically distinct families were clustered in the same clade. Chimeric structures (n = 31), holin genes (n = 18), lysin genes (n = 66), DNA packaging genes (n = 55), and DNA metabolism genes (n = 24) were present in these phages. Moreover, phages from different subdivided clusters harboured distinct genes associated with host cell lysis, DNA packaging, and DNA metabolism. Notably, phages belonging to morphologically distinct families shared common orthologue groups. Although several functional modules of phages SS1 and SE16 shared > 99% nucleotide sequence identity with phages SI2 and SI23, the major differences between these phages were the absence and replication of functional modules. The data obtained herein revealed the genetic diversity of Salmonella phages at genomic, structural, and gene content levels. The genetic diversity of Salmonella phages is likely owing to the acquisition, loss, and replication of functional modules.


Subject(s)
Bacteriophages , Salmonella Phages , Humans , Salmonella Phages/genetics , Phylogeny , Genome, Viral , Bacteriophages/genetics , Salmonella/genetics , DNA , Genetic Variation
17.
Food Chem ; 410: 135380, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36608552

ABSTRACT

An ultrasensitive label-free electrochemical sensor based on a homemade imprinted polypyrrole (PPy) polymer film was prepared to achieve quantitative determination of Lactobacillus rhamnosus GG (LGG). The LGG-imprinted polymer (LIP) film was deposited on a portable screen-printed electrode (SPE) via electropolymerization, which constituted an independent integrated system. The main preparation parameters of the LIP sensor were investigated to obtain optimal performance. Under optimized conditions, the peak current response of the LIP sensor showed a linear relationship with the logarithmic value of LGG concentration in the range from 101 to 109 CFU mL-1 and a detection limit of 5 CFU mL-1. The proposed LIP sensor has achieved efficient, ultrasensitive, highly selective, and cost-effective detection of LGG and can be further developed for practical applications in the quality inspection and development of probiotic products.


Subject(s)
Lacticaseibacillus rhamnosus , Molecular Imprinting , Polymers , Pyrroles , Electrodes , Electrochemical Techniques , Limit of Detection
18.
Talanta ; 264: 124746, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37285699

ABSTRACT

In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.


Subject(s)
Biosensing Techniques , Lacticaseibacillus rhamnosus , Metal Nanoparticles , Peroxidase , Immunoassay/methods , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Horseradish Peroxidase/chemistry , Electrochemical Techniques/methods , Limit of Detection
19.
Virus Res ; 329: 199102, 2023 05.
Article in English | MEDLINE | ID: mdl-36963724

ABSTRACT

Cronobacter sakazakii, a foodborne pathogen, can contaminate powdered infant formula (PIF) and cause life-threatening meningitis, necrotizing colitis and meningoencephalitis in infants. Bacteriophages are increasingly considered an efficient approach to target pathogenic microorganisms. In the current study, four virulent phages that can infect C. sakazakii were isolated from sewage samples, and their biological and complete genomic characteristics were analyzed. A comparative genomic analysis was performed to investigate the functional genes and phylogenetic evolution of the four phages. The results revealed that all four phages belonged to the Ackermannviridae family. Notably, the viral burst size of the phages ranged from 10 to 250 PFU/cell, following a latent period of 5 min to 20 min. Moreover, phages were stable over a pH range of 4 to 10 and a temperature range of 50 ℃ to 60 ℃. The full length of the complete genomes of the four phages ranged from 41,929 bp to 146,806 bp, containing lysis genes but no virulence genes. Phylogenetic tree analysis showed that the four phages were members of two distinct genetic groups with a significant genetic evolutionary distance between each C. sakazakii phage. Furthermore, the antibacterial assay revealed that all phages could inhibit the growth of C. sakazakii for up to 24 h. Taken together, the four phages have huge prospects as additives in dairy products to counter C. sakazakii.


Subject(s)
Bacteriophages , Cronobacter sakazakii , Infant , Humans , Cronobacter sakazakii/genetics , Phylogeny , Genomics , Genome, Viral
20.
Food Chem ; 426: 136611, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37356237

ABSTRACT

Herein, we proposed surface engineering of magnetic peroxidase mimic using bacteriophage by electrostatic interaction to prepare bacteriophage SapYZU15 modified Fe3O4 (SapYZU15@Fe3O4) for colorimetric determination of S. aureus in food. SapYZU15@Fe3O4 exhibits peroxidase-like activity, catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction. After introducing S. aureus, peroxidase-like activity of SapYZU15@Fe3O4 was specifically inhibited, resulting in deceleration of TMB chromogenic reaction. This phenomenon benefits from the presence of unique tail protein gene in the bacteriophage SapYZU15 genome, leading to a specific biological interaction between S. aureus and SapYZU15. On basis of this principle, SapYZU15@Fe3O4 can be employed for colorimetric determination of S. aureus with a limiting detection (LOD), calculated as low as 1.2 × 102 CFU mL-1. With this proposed method, colorimetric detection of S. aureus in food was successfully achieved. This portends that surface engineering of nanozymes using bacteriophage has great potential in the field of colorimetric detection of pathogenic bacterium in food.


Subject(s)
Bacteriophages , Peroxidase , Peroxidase/genetics , Peroxidase/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Colorimetry/methods , Peroxidases , Magnetic Phenomena , Hydrogen Peroxide
SELECTION OF CITATIONS
SEARCH DETAIL