Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38874689

ABSTRACT

PURPOSE: Breast-conserving surgery is the preferred treatment for breast cancer; however, its associated risk of local recurrence is higher than that of mastectomy. We performed a comparative analysis of four patient-reported outcomes, psychosocial well-being, sexual well-being, breast satisfaction, and physical well-being of the chest, and quality of life after three surgical approaches, breast-conserving therapy (BCT), mastectomy alone, and mastectomy with breast reconstruction, for breast cancer treatment. METHODS: A cross-sectional survey using the BREAST-Q questionnaire and including patients who had undergone breast surgery at least 1 year prior to survey completion was performed. The analysis included 1035 patients (mean age, 55.0 ± 9.1 years) who underwent breast reconstruction, 116 patients (mean age, 63.6 ± 12.2 years) who underwent mastectomy, and 64 patients (mean age, 60.8 ± 12.2 years) who underwent BCT. RESULTS: Patients who underwent reconstruction had significantly higher psychosocial well-being scores (62.8 ± 18.4) than those who underwent BCT (57.0 ± 23.6) and mastectomy (50.8 ± 16.8) (p < 0.01). However, significant differences in self-acceptance scores among all patients were not observed. Regarding sexual well-being and breast satisfaction, patients who underwent mastectomy had significantly lower scores (29.9 ± 18.7 and 41.8 ± 17.7, respectively) than those who underwent BCT (45.8 ± 26.6 and 58.3 ± 17.5, respectively) and reconstruction (46.4 ± 20.3 and 58.8 ± 15.4, respectively) (p < 0.01). Physical well-being of the chest scores were not significantly different among all patients (p = 0.14). Symptoms after mastectomy included chest muscle pain and arm movement impairment. Breast pain was a notable symptom after BCT. CONCLUSION: The study findings provide valuable insights regarding patient-reported outcomes, highlight the potential benefits of breast reconstruction, and emphasize the importance of patients' preferences.

2.
Exp Physiol ; 105(9): 1634-1647, 2020 09.
Article in English | MEDLINE | ID: mdl-32652583

ABSTRACT

NEW FINDINGS: What is the central question of this study? Are carotid bodies (CBs) modulated by the damage-associated molecular patterns (DAMPs) and humoral factors of aseptic tissue injury? What are the main findings and their importance? DAMPs (HMGB1, S100 A8/A9) and blood plasma from rats subjected to tibia surgery, a model of aseptic injury, stimulate the release of neurotransmitters (ATP, dopamine) and TNF-α from ex vivo rat CBs. All-thiol HMGB1 mediates upregulation of immune-related biological pathways. These data suggest regulation of CB function by endogenous mediators of innate immunity. ABSTRACT: The glomus cells of carotid bodies (CBs) are the primary sensors of arterial partial O2 and CO2 tensions and moreover serve as multimodal receptors responding also to other stimuli, such as pathogen-associated molecular patterns (PAMPs) produced by acute infection. Modulation of CB function by excessive amounts of these immunomodulators is suggested to be associated with a detrimental hyperinflammatory state. We have hypothesized that yet another class of immunomodulators, endogenous danger-associated molecular patterns (DAMPs), released upon aseptic tissue injury and recognized by the same pathogen recognition receptors as PAMPs, might modulate the CB activity in a fashion similar to PAMPs. We have tested this hypothesis by exposing rat CBs to various DAMPs, such as HMGB1 (all-thiol and disulfide forms) and S100 A8/A9 in a series of ex vivo experiments that demonstrated the release of dopamine and ATP, neurotransmitters known to mediate CB homeostatic responses. We observed a similar response after incubating CBs with conditioned blood plasma obtained from the rats subjected to tibia surgery, a model of aseptic injury. In addition, we have investigated global gene expression in the rat CB using an RNA sequencing approach. Differential gene expression analysis showed all-thiol HMGB1-driven upregulation of a number of prominent pro-inflammatory markers including Il1α and Il1ß. Interestingly, conditioned plasma had a more profound effect on the CB transcriptome resulting in inhibition rather than activation of the immune-related pathways. These data are the first to suggest potential modulation of CB function by endogenous mediators of innate immunity.


Subject(s)
Alarmins/metabolism , Carotid Body/metabolism , Neurotransmitter Agents/metabolism , Wounds and Injuries/metabolism , Adenosine Triphosphate/metabolism , Animals , Calgranulin A , Calgranulin B , Dopamine/metabolism , Gene Expression , HMGB1 Protein , Male , Rats , Rats, Sprague-Dawley , Tibia/surgery
3.
Int J Neuropsychopharmacol ; 22(3): 247-259, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30544218

ABSTRACT

BACKGROUND: Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS: The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS: Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION: Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.


Subject(s)
Antidepressive Agents/administration & dosage , Antidepressive Agents/metabolism , Cerebral Cortex/metabolism , Oligopeptides/administration & dosage , Oligopeptides/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Dose-Response Relationship, Drug , Drug Partial Agonism , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Treatment Outcome
4.
Addict Biol ; 22(5): 1232-1245, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27212105

ABSTRACT

Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the µ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.


Subject(s)
Analgesics, Opioid/pharmacology , Benzamides/pharmacology , Dopamine Agonists/pharmacology , Morphine/pharmacology , Neostriatum/drug effects , Piperazines/pharmacology , Receptors, Dopamine D4/agonists , Reward , Substantia Nigra/drug effects , Animals , Autoradiography , Caudate Nucleus/drug effects , Caudate Nucleus/metabolism , Drug Tolerance , Male , Neostriatum/metabolism , Pars Compacta/drug effects , Pars Compacta/metabolism , Pars Reticulata/drug effects , Pars Reticulata/metabolism , Putamen/drug effects , Putamen/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D4/metabolism , Receptors, Opioid, mu/metabolism , Substance-Related Disorders/metabolism , Substantia Nigra/metabolism
5.
Cereb Cortex ; 25(1): 97-108, 2015 Jan.
Article in English | MEDLINE | ID: mdl-23960211

ABSTRACT

Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the µ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/µ- and κ-/µ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/µ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.


Subject(s)
Emotions/physiology , Functional Laterality/physiology , Gyrus Cinguli/metabolism , Opioid Peptides/metabolism , Pain/metabolism , Adult , Aged , Brain/metabolism , Female , Humans , Male , Middle Aged , RNA, Messenger/metabolism , Young Adult
6.
Proc Natl Acad Sci U S A ; 110(6): 2360-5, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23341612

ABSTRACT

Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinson's disease and is essential for the development of ventral midbrain dopamine (DA) neurons. We used conditional Nurr1 gene-targeted mice in which Nurr1 is ablated selectively in mature DA neurons by treatment with tamoxifen. We show that Nurr1 ablation results in a progressive pathology associated with reduced striatal DA, impaired motor behaviors, and dystrophic axons and dendrites. We used laser-microdissected DA neurons for RNA extraction and next-generation mRNA sequencing to identify Nurr1-regulated genes. This analysis revealed that Nurr1 functions mainly in transcriptional activation to regulate a battery of genes expressed in DA neurons. Importantly, nuclear-encoded mitochondrial genes were identified as the major functional category of Nurr1-regulated target genes. These studies indicate that Nurr1 has a key function in sustaining high respiratory function in these cells, and that Nurr1 ablation in mice recapitulates early features of Parkinson's disease.


Subject(s)
Dopaminergic Neurons/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Animals , Behavior, Animal , Cell Nucleus/genetics , Dopamine/metabolism , Dopaminergic Neurons/ultrastructure , Gene Expression , Genes, Mitochondrial , Mice , Mice, Knockout , Mice, Transgenic , Nuclear Receptor Subfamily 4, Group A, Member 2/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Visual Cortex/metabolism
7.
Acta Neuropathol ; 129(4): 541-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25676386

ABSTRACT

Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine ß-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Locus Coeruleus/metabolism , Norepinephrine/metabolism , Receptors, Somatostatin/metabolism , Age Factors , Aged , Amyloid beta-Peptides/metabolism , Animals , Biogenic Monoamines/metabolism , Carbocyanines/metabolism , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation/genetics , Humans , Locus Coeruleus/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Receptors, Somatostatin/genetics , Signal Transduction/physiology , Somatostatin/metabolism , Temporal Lobe/metabolism , Temporal Lobe/pathology , Tyrosine 3-Monooxygenase/metabolism , tau Proteins/metabolism
8.
Synapse ; 68(5): 179-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24430888

ABSTRACT

The neuropeptide galanin is implicated in regulation of affective behavior, including modulation of 5-HT signaling. Here, we investigated, by use of microdialysis in freely moving rats, the effects of intracerebral (i.c.) and intracerebroventricular (i.c.v.) infusions of galanin on basal extracellular 5-HT levels in medial prefrontal cortex (mPFC), CA1 area of ventral hippocampus (vHPC), central amygdaloid nucleus (CeA), ventromedial hypothalamic nucleus ventrolateral part (VMHvl), and ventromedial caudate putamen (CPu). These results were compared with a parallel immunohistochemical analysis of the distribution of galanin, 5-HT, and noradrenaline (NA) nerve terminals, and with data on galanin receptors. Galanin i.c.v. significantly decreased the 5-HT levels in mPFC to 79% and in vHPC to 72%. Local infusions of galanin caused a long-lasting decrease in 5-HT levels in vHPC to 88%, and a moderate decrease in CeA, whereas the 5-HT levels in mPFC significantly increased to 121%. These effects of i.c. galanin correlated well with the density of 5-HT and galanin nerve terminals and galanin receptors autoradiography in mPFC, vHPC, and CeA. No effects of i.c. or i.c.v. galanin on 5-HT levels were observed in CPu or VMHvl, in agreement with the low numbers of galanin-positive terminals and low/moderate galanin receptor density. Galanin was often found to coexist in NA, but could never be detected in 5-HT terminals. Together the results show a neuroanatomical correlation between the effects of galanin infusions on 5-HT release and distribution of galanin and its receptors, and that i.c.v. and i.c. administration can give opposite effects on 5-HT release.


Subject(s)
Brain/metabolism , Galanin/pharmacokinetics , Receptors, Galanin/metabolism , Serotonin/metabolism , Animals , Brain/drug effects , Galanin/administration & dosage , Infusions, Intraventricular , Male , Microdialysis , Nerve Endings/drug effects , Nerve Endings/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Galanin/genetics , Tissue Distribution , Wakefulness
9.
Exp Physiol ; 99(8): 1089-98, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24887113

ABSTRACT

Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1ß, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.


Subject(s)
Acetylcholine/metabolism , Adenosine Triphosphate/metabolism , Carotid Body/metabolism , Carotid Body/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Interleukins/metabolism , Adult , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Middle Aged , Neurotransmitter Agents/metabolism , Oxygen/metabolism , Receptors, Cytokine/metabolism , Reflex/physiology
10.
J Neurosci ; 31(47): 16928-40, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22114263

ABSTRACT

"Ecstasy" [3,4-methylenedioxymetamphetamine (MDMA)] is of considerable interest in light of its prosocial properties and risks associated with widespread recreational use. Recently, it was found to bind trace amine-1 receptors (TA(1)Rs), which modulate dopaminergic transmission. Accordingly, using mice genetically deprived of TA(1)R (TA(1)-KO), we explored their significance to the actions of MDMA, which robustly activated human adenylyl cyclase-coupled TA(1)R transfected into HeLa cells. In wild-type (WT) mice, MDMA elicited a time-, dose-, and ambient temperature-dependent hypothermia and hyperthermia, whereas TA(1)-KO mice displayed hyperthermia only. MDMA-induced increases in dialysate levels of dopamine (DA) in dorsal striatum were amplified in TA(1)-KO mice, despite identical levels of MDMA itself. A similar facilitation of the influence of MDMA upon dopaminergic transmission was acquired in frontal cortex and nucleus accumbens, and induction of locomotion by MDMA was haloperidol-reversibly potentiated in TA(1)-KO versus WT mice. Conversely, genetic deletion of TA(1)R did not affect increases in DA levels evoked by para-chloroamphetamine (PCA), which was inactive at hTA(1) sites. The TA(1)R agonist o-phenyl-3-iodotyramine (o-PIT) blunted the DA-releasing actions of PCA both in vivo (dialysis) and in vitro (synaptosomes) in WT but not TA(1)-KO animals. MDMA-elicited increases in dialysis levels of serotonin (5-HT) were likewise greater in TA(1)-KO versus WT mice, and 5-HT-releasing actions of PCA were blunted in vivo and in vitro by o-PIT in WT mice only. In conclusion, TA(1)Rs exert an inhibitory influence on both dopaminergic and serotonergic transmission, and MDMA auto-inhibits its neurochemical and functional actions by recruitment of TA(1)R. These observations have important implications for the effects of MDMA in humans.


Subject(s)
Gene Deletion , N-Methyl-3,4-methylenedioxyamphetamine/antagonists & inhibitors , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/physiology , Animals , Dopamine/physiology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Receptors, G-Protein-Coupled/genetics , Serotonin/physiology
11.
Nat Commun ; 13(1): 3046, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650213

ABSTRACT

Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.


Subject(s)
Parkinson Disease , Pluripotent Stem Cells , Animals , Cell Differentiation , Dopaminergic Neurons , Humans , Mesencephalon , Parkinson Disease/therapy , Rats , Tretinoin/pharmacology
12.
Electrophoresis ; 32(24): 3499-509, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22180204

ABSTRACT

We describe a highly sensitive CE with laser-induced fluorescence (LIF) detection for the analysis of N-linked oligosaccharides in glycoproteins using rhodamine 110 as a fluorescence derivatization reagent. One CE separation is performed using a fused-silica capillary and neutral pH buffer conditions and allows for the separation of sialo-oligosaccharides according to the number of sialic acids. An alternate separation is performed using the same capillary and acidic pH buffer conditions, enabling the separation of asialo-oligosaccharides according to their sizes. The derivatization and separation conditions for the analysis of sialo- and asialo-oligosaccharides were optimized. Furthermore, we applied the proposed method for the analyses of N-linked sialo- and asialo-oligosaccharides in glycoproteins (ribonuclease B, fetuin, and recombinant human erythropoietin).


Subject(s)
Electrophoresis, Capillary/methods , Glycoproteins/chemistry , Oligosaccharides/analysis , Rhodamines/chemistry , Animals , Carbohydrate Sequence , Cattle , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Oligosaccharides/chemistry , Sensitivity and Specificity , Spectrometry, Fluorescence
13.
Pharmacol Rep ; 73(4): 1109-1121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33835466

ABSTRACT

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an essential role in the modulation of astrocyte functions. Although lactate secretion from astrocytes contributes to many forms of neuronal plasticity in the central nervous system, including fear learning and memory, the role of PACAP in lactate secretion from astrocytes is unclear. METHODS: The amygdala and hippocampus of PACAP (+ / +) and PACAP (-/-) mice were acquired 1 h after memory acquisition and recall in the passive avoidance test. The concentration of glycogen and lactate in these regions was measured. The concentration of lactate in the hippocampus's extracellular fluid was also measured by microdialysis during memory acquisition or intracerebroventricular administration of PACAP. RESULTS: We observed that memory acquisition caused a significant decrease in glycogen concentration and increased lactate concentration in the PACAP (+ / +) mice's hippocampus. However, memory acquisition did not increase in the lactate concentration in PACAP (-/-) mice's hippocampus. Further, memory retrieval evoked lactate production in the amygdala and the hippocampus of PACAP (+ / +) mice. Still, there was no significant increase in lactate concentration in the same regions of PACAP (-/-) mice. In vivo microdialysis in rats revealed that the hippocampus's extracellular lactate concentration increased after a single PACAP intracerebroventricular injection. Additionally, the hippocampus's extracellular lactate concentration increased with the memory acquisition in PACAP (+ / +) mice, but not in PACAP (-/-) mice. CONCLUSIONS: PACAP may enhance lactate production and secretion in astrocytes during the acquisition and recall of fear memories.


Subject(s)
Astrocytes/metabolism , Fear/physiology , Lactic Acid/metabolism , Memory/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Amygdala/metabolism , Amygdala/physiology , Animals , Astrocytes/physiology , Glycogen/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice , Neuronal Plasticity/physiology , Neurons/metabolism , Neurons/physiology , Rats , Rats, Sprague-Dawley
14.
Sci Adv ; 7(30)2021 Jul.
Article in English | MEDLINE | ID: mdl-34290096

ABSTRACT

Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.

15.
J Clin Psychopharmacol ; 30(5): 496-503, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20814316

ABSTRACT

This study investigated concentrations of quetiapine and norquetiapine in plasma and cerebrospinal fluid (CSF) in 22 schizophrenic patients after 4-week treatment with quetiapine (600 mg/d), which was preceded by a 3-week washout period. Blood and CSF samples were obtained on days 1 and 28, and CSF levels of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations were measured at baseline and after 4 weeks of quetiapine, allowing calculations of differences in HVA (ΔHVA), 5-HIAA (Δ5-HIAA), and MHPG (ΔMHPG) concentrations. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale at baseline and then at weekly intervals. Plasma levels of quetiapine and norquetiapine were 1110 ± 608 and 444 ± 226 ng/mL, and the corresponding CSF levels were 29 ± 18 and 5 ± 2 ng/mL, respectively. After the treatment, the levels of HVA, 5-HIAA, and MHPG were increased by 33%, 35%, and 33%, respectively (P < 0.001). A negative correlation was found between the decrease in PANSS positive subscale scores and CSF ΔHVA (r(rho) = -0.690, P < 0.01), and the decrease in PANSS negative subscale scores both with CSF Δ5-HIAA (r(rho) = -0.619, P = 0.02) and ΔMHPG (r(rho) = -0.484, P = 0.038). Because, unfortunately, schizophrenic patients experience relapses even with the best available treatments, monitoring of CSF drug and metabolite levels might prove to be useful in tailoring individually adjusted treatments.


Subject(s)
Dibenzothiazepines/cerebrospinal fluid , Homovanillic Acid/cerebrospinal fluid , Hydroxyindoleacetic Acid/cerebrospinal fluid , Methoxyhydroxyphenylglycol/cerebrospinal fluid , Schizophrenia/drug therapy , Adolescent , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dibenzothiazepines/blood , Dibenzothiazepines/therapeutic use , Female , Homovanillic Acid/blood , Humans , Hydroxyindoleacetic Acid/blood , Male , Methoxyhydroxyphenylglycol/blood , Middle Aged , Quetiapine Fumarate , Schizophrenia/blood , Schizophrenia/cerebrospinal fluid , Treatment Outcome , Young Adult
16.
J Neural Transm (Vienna) ; 117(6): 681-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20387084

ABSTRACT

The role of the ATP-gated receptor, P2X(7), has been evaluated in the unilateral 6-OHDA rat model of Parkinson's disease using the P2X(7) competitive antagonist A-438079. Nigral P2X(7) immunoreactivity was mainly located in microglia but also in astroglia. A-438079 partially but significantly prevented the 6-OHDA-induced depletion of striatal DA stores. However, this was not associated with a reduction of DA cell loss. Blockade of P2X(7) receptors may represent a novel protective strategy for striatal DA terminals in Parkinson's disease and warrants further future investigation.


Subject(s)
Dopamine/metabolism , Parkinson Disease/complications , Parkinson Disease/drug therapy , Purinergic P2 Receptor Antagonists , Pyridines/therapeutic use , Receptors, Purinergic P2/metabolism , Tetrazoles/therapeutic use , 3,4-Dihydroxyphenylacetic Acid/metabolism , Adrenergic Agents/toxicity , Analysis of Variance , Animals , Brain/metabolism , Cell Count/methods , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Homovanillic Acid/metabolism , Male , Nerve Degeneration/complications , Neural Pathways/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X7 , Statistics, Nonparametric
17.
Neurobiol Aging ; 89: 12-23, 2020 05.
Article in English | MEDLINE | ID: mdl-32143981

ABSTRACT

The nigrostriatal dopaminergic system (NDS) controls motor activity, and its impairment during type 2 diabetes (T2D) progression could increase Parkinson's disease risk in diabetics. If so, whether glycemia regulation prevents this impairment needs to be addressed. We investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition (DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor aging (14 months) changed striatal dopamine content assessed by high-performance liquid chromatography. However, T2D reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected striatal neurons/glia, and the glia effects were counteracted mainly by DPP-4i. These findings show NDS functional pathophysiology in T2D and suggest the preventive use of two unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations suggesting striatal rejuvenation properties.


Subject(s)
Aging/metabolism , Corpus Striatum/metabolism , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dopamine/metabolism , Linagliptin/pharmacology , Substantia Nigra/metabolism , Sulfonylurea Compounds/pharmacology , Animals , Diabetes Mellitus, Type 2/complications , Disease Progression , Male , Mice , Mice, Inbred C57BL , Models, Animal , Parkinson Disease/etiology , Parkinson Disease/prevention & control , Risk
18.
Front Psychol ; 10: 1394, 2019.
Article in English | MEDLINE | ID: mdl-31281283

ABSTRACT

Hemodialysis patients suffer from long-term pain that drains their energy and contributes to behavioral interference and other negative effects on their daily lives that result in or exacerbate functional limitations. In addition, they deal with dietary restrictions, symptoms such as itching, lack of energy, and psychological stressors like the loss of self-concept and self-esteem. Self-regulation involves the capacity to notice, inform, and modulate responses and behavior, and research indicates that it promotes rehabilitation in chronic pain patients. Research on the aspects of self-regulation afforded by the Japanese psychotherapy Dohsa-hou correspond to psychological processes tied to the sense of self-control that clients realize over their body movements. This study pilot tested a hospital-integrated implementation of Dohsa-hou relaxation tasks as a chronic pain management behavioral intervention for five female hemodialysis patients between the ages of 59-62 years. We conducted an ABABABA single-case design to compare baseline A-phases (treatment-as-usual: TAU) taken at recurring 1 week intervals (three sessions per week for a total of 4 weeks, 12 total recordings) with an intervention of Dohsa-hou B-phases every 4 weeks (three sessions per week for 12 weeks, 36 total recordings) over the span of 4 months to compare effectiveness. Visual Analogue Scale (VAS) pain scores between phases were taken and self-regulatory progress was tracked and summarized from a series of semi-structured interviews. Visual analysis of scores for each participant as single cases indicated decreases for the Dohsa-hou phase compared to baseline treatment-as-usual. As a result, participants reported using Dohsa-hou to reduce pain and experienced improvements in quality of life associated with greater self-regulatory capacity to attend to personal care and domestic activities. These preliminary findings suggest that Dohsa-hou body movement relaxation tasks were feasible as a coping skill in a hospital-integrated setting and at home and show promise for promoting quality of life vis-a-vis the management of severe and chronic bodily pain associated with end-stage renal disease and its treatment, particularly by improving aspects of pain-mediated self-regulatory fatigue.

19.
Psychopharmacology (Berl) ; 235(5): 1593-1607, 2018 05.
Article in English | MEDLINE | ID: mdl-29637288

ABSTRACT

RATIONALE: Aberrant glutamatergic, dopaminergic, and GABAergic neurotransmission has been implicated in schizophrenia. Cariprazine reverses the behavioral effects observed in the rat phencyclidine (PCP)-induced model of schizophrenia; however, little is known about its in vivo neurochemistry. OBJECTIVES: The study aims to compare the effects of cariprazine and aripiprazole on PCP-induced changes in the extracellular levels of glutamate, dopamine, serotonin, noradrenaline, and GABA in the rat medial prefrontal cortex (mPFC), and on locomotor activation. METHODS: Microdialysis was performed in awake rats with probes placed into the mPFC. Rats (n = 7/group) received vehicle (saline), cariprazine (0.05, 0.2, or 0.8 mg/kg), or aripiprazole (3 or 20 mg/kg) via gavage. After 60 min, 5 mg/kg PCP was administered intraperitoneally (i.p.). Samples were taken before drug administration, during pretreatment, and after PCP injection. Locomotor activity recording and microdialysis sampling occurred simultaneously. RESULTS: PCP treatment increased extracellular levels of all the neurotransmitters tested except GABA, for which there were no significant changes. Cariprazine and aripiprazole dose-dependently inhibited the PCP-induced increases of tested neurotransmitters. Overall effects were significant for higher cariprazine doses and both aripiprazole doses for glutamate and noradrenaline, for higher cariprazine doses and 20 mg/kg aripiprazole for dopamine, and for 0.8 mg/kg cariprazine and 20 mg/kg aripiprazole for serotonin and locomotor activity. CONCLUSION: Both cariprazine and aripiprazole dose-dependently attenuated PCP-induced hyperlocomotion and acute increases in glutamate, dopamine, noradrenaline, and serotonin levels in the mPFC; cariprazine was approximately 5-fold more potent than aripiprazole.


Subject(s)
Antipsychotic Agents/therapeutic use , Extracellular Fluid/metabolism , Locomotion/physiology , Piperazines/therapeutic use , Prefrontal Cortex/metabolism , Schizophrenia/metabolism , Animals , Antipsychotic Agents/pharmacology , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Extracellular Fluid/drug effects , Glutamic Acid/metabolism , Locomotion/drug effects , Male , Microdialysis/methods , Norepinephrine/metabolism , Phencyclidine/toxicity , Piperazines/pharmacology , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism
20.
Front Pharmacol ; 9: 166, 2018.
Article in English | MEDLINE | ID: mdl-29545750

ABSTRACT

The trace amine-associated receptor 1 (TAAR1) is expressed by dopaminergic neurons, but the precise influence of trace amines upon their functional activity remains to be fully characterized. Here, we examined the regulation of tyrosine hydroxylase (TH) by tyramine and beta-phenylethylamine (ß-PEA) compared to 3-iodothyronamine (T1AM). Immunoblotting and amperometry were performed in dorsal striatal slices from wild-type (WT) and TAAR1 knockout (KO) mice. T1AM increased TH phosphorylation at both Ser19 and Ser40, actions that should promote functional activity of TH. Indeed, HPLC data revealed higher rates of L-dihydroxyphenylalanine (DOPA) accumulation in WT animals treated with T1AM after the administration of a DOPA decarboxylase inhibitor. These effects were abolished both in TAAR1 KO mice and by the TAAR1 antagonist, EPPTB. Further, they were specific inasmuch as Ser845 phosphorylation of the post-synaptic GluA1 AMPAR subunit was unaffected. The effects of T1AM on TH phosphorylation at both Ser19 (CamKII-targeted), and Ser40 (PKA-phosphorylated) were inhibited by KN-92 and H-89, inhibitors of CamKII and PKA respectively. Conversely, there was no effect of an EPAC analog, 8-CPT-2Me-cAMP, on TH phosphorylation. In line with these data, T1AM increased evoked striatal dopamine release in TAAR1 WT mice, an action blunted in TAAR1 KO mice and by EPPTB. Mass spectrometry imaging revealed no endogenous T1AM in the brain, but detected T1AM in several brain areas upon systemic administration in both WT and TAAR1 KO mice. In contrast to T1AM, tyramine decreased the phosphorylation of Ser40-TH, while increasing Ser845-GluA1 phosphorylation, actions that were not blocked in TAAR1 KO mice. Likewise, ß-PEA reduced Ser40-TH and tended to promote Ser845-GluA1 phosphorylation. The D1 receptor antagonist SCH23390 blocked tyramine-induced Ser845-GluA1 phosphorylation, but had no effect on tyramine- or ß-PEA-induced Ser40-TH phosphorylation. In conclusion, by intracellular cascades involving CaMKII and PKA, T1AM, but not tyramine and ß-PEA, acts via TAAR1 to promote the phosphorylation and functional activity of TH in the dorsal striatum, supporting a modulatory influence on dopamine transmission.

SELECTION OF CITATIONS
SEARCH DETAIL