Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
Add more filters

Publication year range
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38653239

ABSTRACT

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Subject(s)
Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
2.
Nature ; 610(7932): 562-568, 2022 10.
Article in English | MEDLINE | ID: mdl-36261549

ABSTRACT

Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.


Subject(s)
Bacteria , Intestines , Nicotine , Non-alcoholic Fatty Liver Disease , Tobacco Smoking , Animals , Humans , Mice , Bacteria/drug effects , Bacteria/metabolism , Ceramides/biosynthesis , Nicotine/adverse effects , Nicotine/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Sphingomyelin Phosphodiesterase/metabolism , Tobacco Smoking/adverse effects , Tobacco Smoking/metabolism , Intestines/drug effects , Intestines/microbiology , AMP-Activated Protein Kinases/metabolism , Disease Progression
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38627939

ABSTRACT

The latest breakthroughs in spatially resolved transcriptomics technology offer comprehensive opportunities to delve into gene expression patterns within the tissue microenvironment. However, the precise identification of spatial domains within tissues remains challenging. In this study, we introduce AttentionVGAE (AVGN), which integrates slice images, spatial information and raw gene expression while calibrating low-quality gene expression. By combining the variational graph autoencoder with multi-head attention blocks (MHA blocks), AVGN captures spatial relationships in tissue gene expression, adaptively focusing on key features and alleviating the need for prior knowledge of cluster numbers, thereby achieving superior clustering performance. Particularly, AVGN attempts to balance the model's attention focus on local and global structures by utilizing MHA blocks, an aspect that current graph neural networks have not extensively addressed. Benchmark testing demonstrates its significant efficacy in elucidating tissue anatomy and interpreting tumor heterogeneity, indicating its potential in advancing spatial transcriptomics research and understanding complex biological phenomena.


Subject(s)
Benchmarking , Gene Expression Profiling , Cluster Analysis , Neural Networks, Computer
4.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38091362

ABSTRACT

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Subject(s)
Parasites , Phosphoprotein Phosphatases , Toxoplasma , Animals , Humans , Mice , Catalytic Domain , Cell Cycle/genetics , Cell Division , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Virulence/genetics , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
5.
Nano Lett ; 24(17): 5277-5283, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624178

ABSTRACT

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

6.
BMC Plant Biol ; 24(1): 308, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644502

ABSTRACT

Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.


Subject(s)
Acacia , Flavonoids , Gene Expression Profiling , Wood , Acacia/genetics , Acacia/metabolism , Flavonoids/metabolism , Flavonoids/biosynthesis , Wood/genetics , Wood/metabolism , Metabolomics , Gene Expression Regulation, Plant , Transcriptome , Phenols/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
7.
FASEB J ; 37(6): e22932, 2023 06.
Article in English | MEDLINE | ID: mdl-37115746

ABSTRACT

Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.


Subject(s)
Antioxidants , Toxoplasma , Animals , Mice , Glutaredoxins/genetics , Toxoplasma/genetics , Amino Acid Sequence , Virulence , Oxidation-Reduction , Oxidative Stress
8.
Analyst ; 149(8): 2436-2444, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38498083

ABSTRACT

Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 µmol mL-1, 100 fg mL-1-10 µg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.


Subject(s)
Biosensing Techniques , Cellulose/analogs & derivatives , Escherichia coli O157 , Nanofibers , Nanofibers/chemistry , Cellulose/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods
9.
Surg Endosc ; 38(2): 648-658, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012440

ABSTRACT

BACKGROUND: Portal vein system thrombosis (PVST) is a potentially fatal complication after splenectomy with esophagogastric devascularization (SED) in cirrhotic patients with portal hypertension. However, the impact of portal vein velocity (PVV) on PVST after SED remains unclear. Therefore, this study aims to explore this issue. METHODS: Consecutive cirrhotic patients with portal hypertension who underwent SED at Tongji Hospital between January 2010 and June 2022 were enrolled. The patients were divided into two groups based on the presence or absence of PVST, which was assessed using ultrasound or computed tomography after the operation. PVV was measured by duplex Doppler ultrasound within one week before surgery. The independent risk factors for PVST were analyzed using univariate and multivariate logistic regression analysis. A nomogram based on these variables was developed and internally validated using 1000 bootstrap resamples. RESULTS: A total of 562 cirrhotic patients with portal hypertension who underwent SED were included, and PVST occurred in 185 patients (32.9%). Multivariate logistic regression analysis showed that PVV was the strongest independent risk factor for PVST. The incidence of PVST was significantly higher in patients with PVV ≤ 16.5 cm/s than in those with PVV > 16.5 cm/s (76.2% vs. 8.5%, p < 0.0001). The PVV-based nomogram was internally validated and showed good performance (optimism-corrected c-statistic = 0.907). Decision curve and clinical impact curve analyses indicated that the nomogram provided a high clinical benefit. CONCLUSION: A nomogram based on PVV provided an excellent preoperative prediction of PVST after splenectomy with esophagogastric devascularization.


Subject(s)
Hypertension, Portal , Venous Thrombosis , Humans , Portal Vein/pathology , Splenectomy/adverse effects , Liver Cirrhosis/surgery , Postoperative Complications/diagnostic imaging , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/etiology , Hypertension, Portal/surgery , Hypertension, Portal/complications
10.
Appl Microbiol Biotechnol ; 108(1): 31, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175233

ABSTRACT

A complete catalase-encoding gene, designated soiCat1, was obtained from soil samples via metagenomic sequencing, assembly, and gene prediction. soiCat1 showed 73% identity to a catalase-encoding gene of Mucilaginibacter rubeus strain P1, and the amino acid sequence of soiCAT1 showed 99% similarity to the catalase of a psychrophilic bacterium, Pedobacter cryoconitis. soiCAT1 was identified as a psychrophilic enzyme due to the low optimum temperature predicted by the deep learning model Preoptem, which was subsequently validated through analysis of enzymatic properties. Experimental results showed that soiCAT1 has a very narrow range of optimum temperature, with maximal specific activity occurring at the lowest test temperature (4 °C) and decreasing with increasing reaction temperature from 4 to 50 °C. To rationally design soiCAT1 with an improved temperature range, soiCAT1 was engineered through site-directed mutagenesis based on molecular evolution data analyzed through position-specific amino acid possibility calculation. Compared with the wild type, one mutant, soiCAT1S205K, exhibited an extended range of optimum temperature ranging from 4 to 20 °C. The strategies used in this study may shed light on the mining of genes of interest and rational design of desirable proteins. KEY POINTS: • Numerous putative catalases were mined from soil samples via metagenomics. • A complete sequence encoding a psychrophilic catalase was obtained. • A mutant psychrophilic catalase with an extended range of optimum temperature was engineered through site-directed mutagenesis.


Subject(s)
Deep Learning , Catalase/genetics , Amino Acid Sequence , Amino Acids , Soil
11.
Ann Noninvasive Electrocardiol ; 29(1): e13107, 2024 01.
Article in English | MEDLINE | ID: mdl-38288514

ABSTRACT

OBJECTIVE: Patients treated with preoperative chemotherapy and immunotherapy for bladder cancer may be at increased risk of cardiotoxicity and electrophysiological abnormalities. This study aimed to analyze their electrocardiographic (ECG) alterations. METHODS: Patients with bladder cancer who were hospitalized and receiving tislelizumab plus nab-paclitaxel (TnP) were enrolled prospectively. ECG, cardiac biomarkers, and echocardiography were performed at baseline and the end of TnP. RESULTS: A total of 60 patients (76.7% males), including 30 muscle-invasive and 30 non-muscle-invasive bladder cancer, received three or four cycles of TnP, respectively. Hypertension was the commonest comorbidity (41.7%), and 25 patients (41.7%) were prescribed cardiovascular drugs. In comparison with baseline characteristics, cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were within normal ranges after TnP. However, echocardiographic parameter of left ventricular ejection fraction slightly decreased after TnP (62.81 ± 3.81% to 61.10 ± 4.37%, p = .011). The incidence of abnormal ECG increased from 65.0% at baseline to 76.7%, of which only a higher prevalence of fragmented QRS (fQRS) was observed (33.3% to 50.0%, p = .013; mainly in inferior leads). ECG parameters of QT dispersion (QTd) were prolonged significantly after the regimen (39.50 ± 11.37 to 44.20 ± 15.85 ms, p = .019). CONCLUSION: In bladder cancer patients receiving preoperative chemotherapy combined with immunotherapy, the main ECG abnormality was fQRS and QTd, with relatively normal cardiac biomarkers and echocardiographic parameters. Regular ECG screening should be carried out carefully to detect potential cardiotoxicity in the long-term follow-up.


Subject(s)
Antibodies, Monoclonal, Humanized , Electrocardiography , Immunotherapy , Paclitaxel , Urinary Bladder Neoplasms , Female , Humans , Male , Biomarkers , Cardiotoxicity , Immunotherapy/adverse effects , Natriuretic Peptide, Brain , Stroke Volume , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/therapy , Ventricular Function, Left , Paclitaxel/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use
12.
Appl Opt ; 63(2): 327-337, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227225

ABSTRACT

Source mask optimization (SMO) is a widely used computational lithography technique for compensating lithographic distortion. However, line-end shortening is still a key factor that cannot be easily corrected and affects the image fidelity of lithography at advanced nodes. This paper proposes a source mask optimization method that suppresses line-end shortening and improves lithography fidelity. An adaptive hybrid weight method is employed to increase the weights of the line end during the optimization, which adaptively updates the weights in each iteration according to the edge placement error (EPE). A cost function containing a penalty term based on the normalized image log slope (NILS) is established to ensure the fidelity of the overall feature when paying more attention to the line-end region. The scope of this penalty term is regulated by widening and extending the split contour to further reduce the line-end shortening. Simulation results show that the proposed method can effectively suppress the line-end shortening and improve the lithography fidelity compared with the traditional SMO method.

13.
Nucleic Acids Res ; 50(9): 5226-5238, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35524569

ABSTRACT

Argonaute (Ago) proteins are programmable nucleases found in eukaryotes and prokaryotes. Prokaryotic Agos (pAgos) share a high degree of structural homology with eukaryotic Agos (eAgos), and eAgos originate from pAgos. Although eAgos exclusively cleave RNA targets, most characterized pAgos cleave DNA targets. This study characterized a novel pAgo, MbpAgo, from the psychrotolerant bacterium Mucilaginibacter paludis which prefers to cleave RNA targets rather than DNA targets. Compared to previously studied Agos, MbpAgo can utilize both 5'phosphorylated(5'P) and 5'hydroxylated(5'OH) DNA guides (gDNAs) to efficiently cleave RNA targets at the canonical cleavage site if the guide is between 15 and 17 nt long. Furthermore, MbpAgo is active at a wide range of temperatures (4-65°C) and displays no obvious preference for the 5'-nucleotide of a guide. Single-nucleotide and most dinucleotide mismatches have no or little effects on cleavage efficiency, except for dinucleotide mismatches at positions 11-13 that dramatically reduce target cleavage. MbpAgo can efficiently cleave highly structured RNA targets using both 5'P and 5'OH gDNAs in the presence of Mg2+ or Mn2+. The biochemical characterization of MbpAgo paves the way for its use in RNA manipulations such as nucleic acid detection and clearance of RNA viruses.


Subject(s)
Argonaute Proteins , Genetic Techniques , Argonaute Proteins/metabolism , Bacteria/genetics , Bacteroidetes , DNA/chemistry , Endonucleases/metabolism , Eukaryota/genetics , Nucleotides/metabolism , RNA/metabolism
14.
Drug Resist Updat ; 68: 100933, 2023 05.
Article in English | MEDLINE | ID: mdl-36821972

ABSTRACT

Alternative polyadenylation (APA) is a widespread mechanism generating RNA molecules with alternative 3' ends. Herein, we discovered that TargetScan includes a novel XBP1 transcript with a longer 3' untranslated region (UTR) (XBP1-UL) than that included in NCBI. XBP1-UL exhibited a lowered level in blood samples from lung adenocarcinoma (LUAD) patients and in those after DDP treatment. Consistently, XBP1-UL was reduced in A549 cells compared to normal BEAS-2B cells, as well as in DDP-treated/resistant A549 cells relative to controls. Moreover, due to decreased usage of the distal polyadenylation site (PAS) in 3'UTR, XBP1-UL level was lowered in A549 cells and decreased further in DDP-resistant A549 (A549/DDP) cells. Importantly, use of the distal PAS (dPAS) and XBP1-UL level were gradually reduced in A549 cells under increasing concentrations of DDP, which was attributed to DDP-induced endoplasmic reticulum (ER) stress. Furthermore, XBP1 transcripts with shorter 3'UTR (XBP1-US) were more stable and presented stronger potentiation on DDP resistance. The choice of proximal PAS (pPAS) was attributed to CPSF6 elevation, which was caused by BRCA1-distrupted R-loop accumulation in CPSF6 5'end. DDP-induced nuclear LINC00221 also facilitated CPSF6-induced pPAS choice in the pre-XBP1 3'end. Finally, we found that unlike the unspliced XBP1 protein (XBP1-u), the spliced form XBP1-s retarded p53 degradation to facilitate DNA damage repair of LUAD cells. The current study provides new insights into tumor progression and DDP resistance in LUAD, which may contribute to improved LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , 3' Untranslated Regions/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Apoptosis , X-Box Binding Protein 1/genetics
15.
Article in English | MEDLINE | ID: mdl-38734778

ABSTRACT

Hereditary angioedema (HAE) due to C1-inhibitor deficiency is a rare, debilitating, genetic disorder characterized by recurrent, unpredictable, attacks of edema. The clinical symptoms of HAE arise from excess bradykinin generation due to dysregulation of the plasma kallikrein-kinin system (KKS). A quantitative systems pharmacology (QSP) model that mechanistically describes the KKS and its role in HAE pathophysiology was developed based on HAE attacks being triggered by autoactivation of factor XII (FXII) to activated FXII (FXIIa), resulting in kallikrein production from prekallikrein. A base pharmacodynamic model was constructed and parameterized from literature data and ex vivo assays measuring inhibition of kallikrein activity in plasma of HAE patients or healthy volunteers who received lanadelumab. HAE attacks were simulated using a virtual patient population, with attacks recorded when systemic bradykinin levels exceeded 20 pM. The model was validated by comparing the simulations to observations from lanadelumab and plasma-derived C1-inhibitor clinical trials. The model was then applied to analyze the impact of nonadherence to a daily oral preventive therapy; simulations showed a correlation between the number of missed doses per month and reduced drug effectiveness. The impact of reducing lanadelumab dosing frequency from 300 mg every 2 weeks (Q2W) to every 4 weeks (Q4W) was also examined and showed that while attack rates with Q4W dosing were substantially reduced, the extent of reduction was greater with Q2W dosing. Overall, the QSP model showed good agreement with clinical data and could be used for hypothesis testing and outcome predictions.

16.
PLoS Genet ; 17(9): e1009785, 2021 09.
Article in English | MEDLINE | ID: mdl-34506481

ABSTRACT

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Subject(s)
Mediator Complex/metabolism , Myocytes, Cardiac/metabolism , Transcription, Genetic , Animals , Female , Male , Mediator Complex/genetics , Mediator Complex/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Article in English | MEDLINE | ID: mdl-38307449

ABSTRACT

Eriocheir sinensis megalopa has a special life history of migrating from seawater to freshwater. In order to investigate how the megalopa adapt themselves to the freshwater environment, we designed an experiment to reduce the salinity of water from 30 ppt to 0 at rates of 30 ppt, 15 ppt, 10 ppt, and 5 ppt per 24 h to evaluate the effects of different degrees of hyposaline stress on the osmotic regulation ability and antioxidant system of the megalopa. Experimental results related to osmotic pressure regulation show that the gill tissue of megalopa in the treatment group of 30 ppt/24 h rapid reduction of salinity was damaged, while in the treatment group of 5 ppt/24 h it was intact. At the same time, the experiment also found that in each treatment group with different salinity reduction rates, compared with the control salinity, the NKA activity of megalopa increased significantly after the salinity was reduced to 20 ppt (p < 0.05). In addition, two genes involved in chloride ion transmembrane absorption have different expression patterns in the treatment groups with different salinity reduction rates. Among them, Clcn2 was significantly highly expressed only in the rapid salinity reduction intervals of 30 ppt/24 h and 15 ppt/24 h (p < 0.05). Slc26a6 was significantly highly expressed only in the slow salinity reduction intervals of 10 ppt/24 h and 5 ppt/24 h (p < 0.05). On the other hand, the results of antioxidant and apoptosis related experiments showed that in all treatment groups with different rates of salinity reduction, the activities of T-AOC, GSH-PX, and CAT basically increased significantly after salinity reduction compared to the control salinity. Moreover, the activities of T-AOC and CAT were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. Finally, the experimental results related to apoptosis showed that the expression trends of Capase3 and Bax-2 were basically the same in the treatment groups with different salinity reduction rates, and their expressions were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. In summary, the present study found that megalopa had strong hyposaline tolerance and were able to regulate osmolality at different rates of salinity reduction, but the antioxidant capacity differed significantly between treatment groups, with rapid salinity reduction leading to oxidative damage in the anterior gills and reduced antioxidant enzyme activity and apoptosis levels.


Subject(s)
Antioxidants , Osmoregulation , Animals , Antioxidants/metabolism , Salinity , Water-Electrolyte Balance , Apoptosis , Gills/metabolism
18.
Altern Ther Health Med ; 30(1): 134-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773661

ABSTRACT

Objective: To analyze the enrichment pathway, hub gene, and Protein-protein interaction (PPI) network of rheumatoid arthritis (RA) and construct peripheral blood subtypes based on integrated bioinformatics analysis. Methods: Suitable datasets were screened from the GEO database based on titles and abstracts, batch positive analysis was performed using R language, and KEGG enrichment analysis and GO enrichment analysis were performed. After screening the differential genes, the PPI network was constructed, and the hubba plug-in of Cytoscape software was used to obtain the top 10 hub genes(key regulatory genes). hub genes were used as the typing condition to identify the molecular subtypes of synovial tissue and peripheral blood of arthritis. Results: GSE12021 and GSE93272 have been chosen for analysis. GSE12021 presents the transcriptome analysis of human joint synovial tissue, comprising 12 samples from patients with rheumatoid arthritis and 9 samples from normal healthy individuals. On the other hand, GSE93272 includes human peripheral blood samples, comprising 232 samples from patients with rheumatoid arthritis and 43 samples from normal healthy individuals. The main results of GSE12021 KEGG enrichment were Parathyroid hormone synthesis, Relaxin signaling pathway, TNF signaling pathway, Rheumatoid arthritis, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, Toll-like receptor signaling pathway and so on. The main results of GSE12021 GO enrichment were regulation of feeding behavior, regulation of neuron death, positive regulation of cell-cell adhesion, and positive regulation of leukocyte activation. The top 10 hub genes were CD8A, JUN, CTLA4, CD19, LCK, FOS, CCL5, IL7R, CCR7 and CD247. Synovial tissue and peripheral blood subtypes of rheumatoid arthritis showed that the two classification methods maintained consistency. Conclusion: Identifying the Hub gene in peripheral blood helps screen molecular subtypes of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Protein Interaction Maps , Humans , Protein Interaction Maps/genetics , Transcriptome , Arthritis, Rheumatoid/genetics , Gene Expression Profiling/methods
19.
BMC Biol ; 21(1): 218, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833706

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.


Subject(s)
Immunity, Innate , Lung , Animals , Mice , Lung/metabolism , Lymphocytes , Programmed Cell Death 1 Receptor/metabolism , Cytokines/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
20.
J Appl Clin Med Phys ; : e14380, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715381

ABSTRACT

PURPOSE: The aim of this study is to develop a deep learning model capable of discriminating between pancreatic plasma cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) by leveraging patient-specific clinical features and imaging outcomes. The intent is to offer valuable diagnostic support to clinicians in their clinical decision-making processes. METHODS: The construction of the deep learning model involved utilizing a dataset comprising abdominal magnetic resonance T2-weighted images obtained from patients diagnosed with pancreatic cystic tumors at Changhai Hospital. The dataset comprised 207 patients with SCN and 93 patients with MCN, encompassing a total of 1761 images. The foundational architecture employed was DenseNet-161, augmented with a hybrid attention mechanism module. This integration aimed to enhance the network's attentiveness toward channel and spatial features, thereby amplifying its performance. Additionally, clinical features were incorporated prior to the fully connected layer of the network to actively contribute to subsequent decision-making processes, thereby significantly augmenting the model's classification accuracy. The final patient classification outcomes were derived using a joint voting methodology, and the model underwent comprehensive evaluation. RESULTS: Using the five-fold cross validation, the accuracy of the classification model in this paper was 92.44%, with an AUC value of 0.971, a precision rate of 0.956, a recall rate of 0.919, a specificity of 0.933, and an F1-score of 0.936. CONCLUSION: This study demonstrates that the DenseNet model, which incorporates hybrid attention mechanisms and clinical features, is effective for distinguishing between SCN and MCN, and has potential application for the diagnosis of pancreatic cystic tumors in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL