Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 178(3): 600-611.e16, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348887

ABSTRACT

The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , DNA Replication , DNA, Single-Stranded/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Proc Natl Acad Sci U S A ; 120(52): e2316466120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109526

ABSTRACT

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.


Subject(s)
Minichromosome Maintenance Proteins , Saccharomyces cerevisiae Proteins , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication , DNA/metabolism , DNA, Single-Stranded/genetics
3.
Mol Divers ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722455

ABSTRACT

Visceral Leishmaniasis (VL), the second neglected tropical disease caused by various Leishmania species, presents a significant public health challenge due to limited treatment options and the absence of vaccines. The agent responsible for visceral leishmaniasis, also referred to as "black fever" in India, is Leishmania donovani. This study focuses on L. donovani Minichromosome maintenance 10 (LdMcm10), a crucial protein in the DNA replication machinery, as a potential therapeutic target in Leishmania therapy using in silico and in vitro approaches. We employed bioinformatics tools, molecular docking, and molecular dynamics simulations to predict potential inhibitors against the target protein. The research revealed that the target protein lacks homologues in the host, emphasizing its potential as a drug target. Ligands from the DrugBank database were screened against LdMcm10 using PyRx software. The top three compounds, namely suramin, vapreotide, and pasireotide, exhibiting the best docking scores, underwent further investigation through molecular dynamic simulation and in vitro analysis. The observed structural dynamics suggested that LdMcm10-ligand complexes maintained consistent binding throughout the 300 ns simulation period, with minimal variations in their backbone. These findings suggest that these three compounds hold promise as potential lead compounds for developing new drugs against leishmaniasis. In vitro experiments also demonstrated a dose-dependent reduction in L. donovani viability for suramin, vapreotide, and pasireotide, with computed IC50 values providing quantitative metrics of their anti-leishmanial efficacy. The research offers a comprehensive understanding of LdMcm10 as a drug target and provides a foundation for further investigations and clinical exploration, ultimately advancing drug discovery strategies for leishmaniasis treatment.

4.
J Cell Mol Med ; 27(12): 1708-1724, 2023 06.
Article in English | MEDLINE | ID: mdl-37246638

ABSTRACT

Molecular profiling has been applied for uterine corpus endometrial carcinoma (UCEC) management for many years. The aim of this study was to explore the role of MCM10 in UCEC and construct its overall survival (OS) prediction models. Data from TCGA, GEO, cbioPotal and COSMIC databases and the methods, such as GO, KEGG, GSEA, ssGSEA and PPI, were employed to bioinformatically detect the effects of MCM10 on UCEC. RT-PCR, Western blot and immunohistochemistry were used to validate the effects of MCM10 on UCEC. Based on Cox regression analysis using the data from TCGA and our clinical data, two OS prediction models for UCEC were established. Finally, the effects of MCM10 on UCEC were detected in vitro. Our study revealed that MCM10 was variated and overexpressed in UCEC tissue and involved in DNA replication, cell cycle, DNA repair and immune microenvironment in UCEC. Moreover, silencing MCM10 significantly inhibited the proliferation of UCEC cells in vitro. Importantly, based on MCM10 expression and clinical features, the OS prediction models were constructed with good accuracy. MCM10 could be an effective treatment target and a prognostic biomarker for UCEC patients. The OS prediction models might help establish the strategies of follow-up and treatment for UCEC patients.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Humans , Female , Prognosis , Treatment Outcome , Blotting, Western , Biomarkers , Endometrial Neoplasms/genetics , Tumor Microenvironment , Minichromosome Maintenance Proteins/genetics
5.
Proc Natl Acad Sci U S A ; 116(3): 798-803, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30598452

ABSTRACT

The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, GINS) tightly binds Mcm10, an essential replication protein in all eukaryotes. Here we show that Mcm10 has a potent strand-annealing activity both alone and in complex with CMG. CMG-Mcm10 unwinds and then reanneals single strands soon after they have been unwound in vitro. Given the DNA damage and replisome instability associated with loss of Mcm10 function, we examined the effect of Mcm10 on fork regression. Fork regression requires the unwinding and pairing of newly synthesized strands, performed by a specialized class of ATP-dependent DNA translocases. We show here that Mcm10 inhibits fork regression by the well-known fork reversal enzyme SMARCAL1. We propose that Mcm10 inhibits the unwinding of nascent strands to prevent fork regression at normal unperturbed replication forks, either by binding the fork junction to form a block to SMARCAL1 or by reannealing unwound nascent strands to their parental template. Analysis of the CMG-Mcm10 complex by cross-linking mass spectrometry reveals Mcm10 interacts with six CMG subunits, with the DNA-binding region of Mcm10 on the N-face of CMG. This position on CMG places Mcm10 at the fork junction, consistent with a role in regulating fork regression.


Subject(s)
DNA Helicases/metabolism , DNA Replication , DNA/metabolism , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Humans , Mass Spectrometry , Replication Protein A/metabolism
6.
Future Oncol ; 17(33): 4457-4470, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34350781

ABSTRACT

Aim: To investigate the role of MCM10, a conserved replication factor, in hepatocellular carcinoma (HCC). Methods: We used data from 364 HCC patients in the Cancer Genome Atlas database and conducted in vitro experiments to confirm the role of MCM10. Results: High MCM10 expression correlated with poor HCC patient outcome and was an independent prognosticator for HCC. Time-dependent receiver operating characteristic curve analysis found that the sequential trend of MCM10 for survival was not inferior to that of the tumor node metastasis stage. The MCM10 model had a higher C-index than the non-MCM10 model, indicating that incorporating MCM10 into a multivariate model improves the model's prognostic accuracy for HCC. Genetic alterations of MCM10 prominently correlated with an unfavorable HCC outcome. Conclusion: Our findings strongly suggest using the MCM10 gene as a prognostic indicator in HCC.


Lay abstract Hepatocellular carcinoma is one of the most aggressive malignant cancers globally. Our study investigated the role of a conserved replication factor, MCM10, in hepatocellular carcinoma. We performed some bioinformatics analysis and in vitro experiments, and successfully found that MCM10 has a good predictive value for survival in patients with hepatocellular carcinoma.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/mortality , Minichromosome Maintenance Proteins/genetics , Neoplasm Recurrence, Local/epidemiology , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Computational Biology , DNA Copy Number Variations , Disease-Free Survival , Female , Follow-Up Studies , Hepatectomy , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver/surgery , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , Middle Aged , Minichromosome Maintenance Proteins/analysis , Minichromosome Maintenance Proteins/metabolism , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Prognosis , Protein Interaction Mapping , Protein Interaction Maps/genetics , ROC Curve , Retrospective Studies , Risk Assessment/methods
7.
J Biol Chem ; 292(31): 13008-13021, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28646110

ABSTRACT

The protein mini-chromosome maintenance 10 (Mcm10) was originally identified as an essential yeast protein in the maintenance of mini-chromosome plasmids. Subsequently, Mcm10 has been shown to be required for both initiation and elongation during chromosomal DNA replication. However, it is not fully understood how the multiple functions of Mcm10 are coordinated or how Mcm10 interacts with other factors at replication forks. Here, we identified and characterized the Mcm2-7-interacting domain in human Mcm10. The interaction with Mcm2-7 required the Mcm10 domain that contained amino acids 530-655, which overlapped with the domain required for the stable retention of Mcm10 on chromatin. Expression of truncated Mcm10 in HeLa cells depleted of endogenous Mcm10 via siRNA revealed that the Mcm10 conserved domain (amino acids 200-482) is essential for DNA replication, whereas both the conserved and the Mcm2-7-binding domains were required for its full activity. Mcm10 depletion reduced the initiation frequency of DNA replication and interfered with chromatin loading of replication protein A, DNA polymerase (Pol) α, and proliferating cell nuclear antigen, whereas the chromatin loading of Cdc45 and Pol ϵ was unaffected. These results suggest that human Mcm10 is bound to chromatin through the interaction with Mcm2-7 and is primarily involved in the initiation of DNA replication after loading of Cdc45 and Pol ϵ.


Subject(s)
Chromatin/metabolism , DNA Replication , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 7/metabolism , Minichromosome Maintenance Proteins/metabolism , Origin Recognition Complex/metabolism , Replication Origin , Active Transport, Cell Nucleus , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Minichromosome Maintenance Complex Component 2/chemistry , Minichromosome Maintenance Complex Component 7/chemistry , Minichromosome Maintenance Proteins/antagonists & inhibitors , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Multimerization , Protein Stability , RNA Interference , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Silent Mutation , Structural Homology, Protein
8.
Prostate ; 78(16): 1299-1310, 2018 12.
Article in English | MEDLINE | ID: mdl-30095171

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is one of the most malignant tumors of the male urogenital system. There is an urgent need to identify novel biomarkers for PCa. METHODS: In this study, we evaluated the expression levels of MCM10 in prostate cancer by analyzing public datasets (including The Cancer Genome Atlas and GSE21032). Furthermore, loss of function assays was performed to evaluate the effects of MCM10 on cell proliferation, apoptosis, and colony formation. Furthermore, we performed microarray and bioinformatics analyses to explore the potential mechanisms of MCM10. RESULTS: In the present study, we for the first time revealed MCM10 was significantly upregulated in PCa. Moreover, we found increased MCM10 expression was significantly associated with advanced clinical stage and high Gleason score PCa. Kaplan-Meier analysis demonstrated higher MCM10 expression was associated with a poorer patient prognosis in PCa. Furthermore, loss of function assays showed that MCM10 knockdown inhibited cell proliferation and colony formation, but promoted cell apoptosis. Additionally, we performed microarray and bioinformatics analysis and found MCM10 regulated PCa progression by regulating a series of biological processes including cancer, cell death, and apoptosis. CONCLUSIONS: These results suggest that MCM10 may be a potential diagnostic and therapeutic target for PCa.


Subject(s)
Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Minichromosome Maintenance Proteins/genetics , Prostatic Neoplasms/genetics , Apoptosis , Databases, Factual , Disease Progression , Disease-Free Survival , Humans , Male , Neoplasm Grading , Prognosis , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Survival Rate
9.
J Biol Chem ; 291(11): 5879-5888, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26719337

ABSTRACT

Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus.


Subject(s)
Minichromosome Maintenance Complex Component 6/metabolism , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA Replication , Protein Binding , Replication Origin , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics
10.
Pediatr Blood Cancer ; 64(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-28598542

ABSTRACT

BACKGROUND: Overexpression of minichromosome maintenance (MCM) proteins 2, 3, and 7 is associated with migration and invasion in medulloblastoma (MB). However, expression profiling of all prereplication complex (pre-RC) has not been addressed in MBs. PROCEDURE: We performed mRNA expression profiling of a large set of pre-RC elements in cell lines and tumor tissues of MB. RNAi technology was employed for functional studies in MB cell lines. RESULTS: Our data showed that most of the pre-RC components are significantly overexpressed in MB. Among all pre-RC mRNAs, MCM10 showed the highest level of expression (∼500- to 1,000-fold) in MB cell lines and tissues compared to the levels detected in cerebellum. In addition, RNAi silencing of MCM10 caused reduced cell proliferation and cell viability in MB cells. CONCLUSIONS: Taken together, our study reveals that the pre-RC is dysregulated in MB. In addition, MCM10, a member of this complex, is significantly overexpressed in MB and is required for tumor cell proliferation.


Subject(s)
Cerebellar Neoplasms/chemistry , Medulloblastoma/chemistry , Minichromosome Maintenance Proteins/physiology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/pathology , Humans , Immunohistochemistry , Medulloblastoma/pathology , Minichromosome Maintenance Proteins/analysis
11.
Semin Cell Dev Biol ; 30: 121-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24662891

ABSTRACT

Minichromsome maintenance protein 10 (Mcm10) is an essential replication factor that is required for the activation of the Cdc45:Mcm2-7:GINS helicase. Mcm10's ability to bind both ds and ssDNA appears vital for this function. In addition, Mcm10 interacts with multiple players at the replication fork, including DNA polymerase-α and proliferating cell nuclear antigen with which it cooperates during DNA elongation. Mcm10 lacks enzymatic function, but instead provides the replication apparatus with an oligomeric scaffold that likely acts in the coordination of DNA unwinding and DNA synthesis. Not surprisingly, loss of Mcm10 engages checkpoint, DNA repair and SUMO-dependent rescue pathways that collectively counteract replication stress and chromosome breakage. Here, we review Mcm10's structure and function and explain how it contributes to the maintenance of genome integrity.


Subject(s)
Minichromosome Maintenance Proteins/physiology , Amino Acid Sequence , Animals , Conserved Sequence , DNA Damage , DNA Repair , DNA Replication , Humans , Minichromosome Maintenance Proteins/chemistry , Neoplasms/genetics , Protein Binding , Protein Multimerization
12.
J Biol Chem ; 290(28): 17380-9, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26032416

ABSTRACT

Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.


Subject(s)
Carrier Proteins/metabolism , HIV-1/physiology , Minichromosome Maintenance Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Cullin Proteins/metabolism , DNA Replication , DNA-Binding Proteins/metabolism , G2 Phase Cell Cycle Checkpoints , HEK293 Cells , HIV-1/genetics , HIV-1/pathogenicity , HeLa Cells , Host-Pathogen Interactions , Humans , Minichromosome Maintenance Proteins/antagonists & inhibitors , Minichromosome Maintenance Proteins/genetics , Models, Biological , Proteasome Endopeptidase Complex/metabolism , Protein Serine-Threonine Kinases , RNA, Small Interfering/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics
13.
Yeast ; 32(8): 567-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26081484

ABSTRACT

Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.


Subject(s)
Gene Targeting/methods , Indoleacetic Acids/pharmacology , Mutation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Mutagenesis , Promoter Regions, Genetic , Saccharomyces cerevisiae/drug effects
14.
DNA Repair (Amst) ; 135: 103646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340377

ABSTRACT

Eukaryotic genome stability is maintained by a complex and diverse set of molecular processes. One class of enzymes that promotes proper DNA repair, replication and cell cycle progression comprises small ubiquitin-like modifier (SUMO)-targeted E3 ligases, or STUbLs. Previously, we reported a role for the budding yeast STUbL synthetically lethal with sgs1 (Slx) 5/8 in preventing G2/M-phase arrest in a minichromosome maintenance protein 10 (Mcm10)-deficient model of replication stress. Here, we extend these studies to human cells, examining the requirement for the human STUbL RING finger protein 4 (RNF4) in MCM10 mutant cancer cells. We find that MCM10 and RNF4 independently promote origin firing but regulate DNA synthesis epistatically and, unlike in yeast, the negative genetic interaction between RNF4 and MCM10 causes cells to accumulate in G1-phase. When MCM10 is deficient, RNF4 prevents excessive DNA under-replication at hard-to-replicate regions that results in large DNA copy number alterations and severely reduced viability. Overall, our findings highlight that STUbLs participate in species-specific mechanisms to maintain genome stability, and that human RNF4 is required for origin activation in the presence of chronic replication stress.


Subject(s)
DNA Repair , Genomic Instability , Humans , DNA Replication , Mitosis , Saccharomyces cerevisiae/genetics , Nuclear Proteins/genetics , Transcription Factors
15.
Open Biol ; 14(1): 230407, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38262603

ABSTRACT

Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cell Differentiation , Genes, Essential , Genomic Instability , Killer Cells, Natural , Minichromosome Maintenance Proteins
16.
Am J Transl Res ; 15(11): 6451-6463, 2023.
Article in English | MEDLINE | ID: mdl-38074804

ABSTRACT

BACKGROUND: Oncogenic processes in cancer are often characterized by dysregulation of critical genes. Our study focused on the minichromosome maintenance 10 replication initiation factor (MCM10) gene's expression and its potential diagnostic and prognostic implications in pan-cancer. METHOD: Leveraging large-scale genomic datasets, and experimental validation we embarked on a comprehensive analysis to shed light on the diagnostic and prognostic role of MCM10. RESULTS: Our findings underscore the wide-ranging up-regulation of MCM10 across 24 major cancer types, positioning it as a ubiquitous player in tumorigenesis. Significantly, MCM10 up-regulation was strongly associated with poorer overall survival in Kidney Renal Papillary Cell Carcinoma (KIRP), Liver Hepatocellular Carcinoma (LIHC), and Lung Adenocarcinoma (LUAD), emphasizing its potential as a valuable prognostic marker in these cancers. While genetic mutations often drive oncogenic processes, our mutational analysis revealed the relative stability of MCM10 in KIRP, LIHC, and LUAD. This suggests that epigenetic (hypomethylation) and non-mutational regulatory mechanisms predominantly govern MCM10 expression in these cancer types. Further analyses demonstrated positive correlations between MCM10 expression and immune cell infiltration, particularly CD8+ T cells and CD4+ T cells, offering insights into the gene's influence on the tumor immune microenvironment. Additionally, pathway enrichment analysis highlighted MCM10-associated genes' involvement in crucial signaling pathways, such as the cell cycle, DNA replication, and repair. Exploring the therapeutic potential, we examined important drugs capable of regulating MCM10 expression, opening doors to personalized treatment strategies. CONCLUSION: Our study elucidates the multifaceted roles of MCM10 in KIRP, LIHC, and LUAD. Its pervasive up-regulation, prognostic significance, epigenetic regulation, and influence on the immune microenvironment provide valuable insights into these cancers. This research contributes to the growing body of evidence surrounding MCM10 and invites further investigation, validation, and potential translational efforts to harness its clinical relevance.

17.
Stem Cell Reports ; 18(7): 1534-1546, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37437546

ABSTRACT

Hematopoietic stem cells (HSCs) guarantee the continuous supply of all blood lineages during life. In response to stress, HSCs are capable of extensive proliferative expansion, whereas in steady state, HSCs largely remain in a quiescent state to prevent their exhaustion. DNA replication is a very complex process, where many factors need to exert their functions in a perfectly concerted manner. Mini-chromosome-maintenance protein 10 (Mcm10) is an important replication factor, required for proper assembly of the eukaryotic replication fork. In this report, we use zebrafish to study the role of mcm10 during embryonic development, and we show that mcm10 specifically regulates HSC emergence from the hemogenic endothelium. We demonstrate that mcm10-deficient embryos present an accumulation of DNA damages in nascent HSCs, inducing their apoptosis. This phenotype can be rescued by knocking down p53. Taken all together, our results show that mcm10 plays an important role in the emergence of definitive hematopoiesis.


Subject(s)
Hemangioblasts , Minichromosome Maintenance Proteins , Zebrafish Proteins , Zebrafish , Animals , Female , Apoptosis/genetics , Cell Cycle Proteins , Hematopoietic Stem Cells
18.
Cell Rep ; 42(2): 112109, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36807139

ABSTRACT

Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.


Subject(s)
Chromatin , DNA Replication , Animals , DNA/metabolism , Xenopus laevis
19.
Front Genet ; 13: 864578, 2022.
Article in English | MEDLINE | ID: mdl-35664337

ABSTRACT

Background: Microchromosome maintenance protein 10 (MCM10) is required for DNA replication in all eukaryotes, and it plays a key role in the development of many types of malignancies. However, we currently still do not know the relationship between MCM10 and ovarian cancer (OV) prognosis and immune checkpoints. Methods: The Gene Expression Profiling Interactive Analysis and Tumor Immunology Estimation Resource (TIMER) databases were used to investigate MCM10 expression in Fan cancer. The Kaplan-Meier Plotter and PrognoScan were used to assess the relationship between MCM10 and OV prognosis. The LinkedOmics database was used to analyze the MCM10 co-expression network and explore GO term annotation and the KEGG pathway. The relationship between MCM10 expression and immune infiltration in OV was investigated using the Tumor Immunology Estimation Resource database. cBioPortal database was used to explore the relationship between MCM10 expression and 25 immune checkpoints. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect MCM10 expression. The prognosis was also analyzed by distinguishing between high and low expression groups based on median expression values. Results: The results of the three data sets (220,651_s_at, 222,962_s_at and 223,570_at) in KM Plotter all indicated that the overall survivalof the high MCM10 expression group was lower than that of the low expression group OV, and the results of GSE9891 also reached the same conclusion. The expression level of MCM10 was negatively correlated with B cells and CD8+T cells, and positively correlated with CD4+T Cells and Macrophages. GO term annotation and KEGG pathway analysis showed that the co-expressed genes of MCM10 were mainly enriched in cell cycle and DNA replication. The alterations in MCM10 coexisted statistically with the immune checkpoints CTLA4, TNFSF4, TNFSF18, CD80, ICOSLG, LILRB1 and CD200. PCR results displayed that MCM10 was highly expressed in OV tissues, and the increased expression of MCM10 was significantly associated with poor overall survival. Conclusion: These results demonstrated that high expression of MCM10 was associated with poor prognosis in OV and correlated with immune checkpoints.

20.
Int J Biol Sci ; 18(9): 3827-3844, 2022.
Article in English | MEDLINE | ID: mdl-35813483

ABSTRACT

Genomic instability is considered as one of the key hallmark during cancer development and progression. Cellular mechanisms, such as DNA replication initiation, DNA damage and repair response, apoptosis etc are observed to block progression of genomic instability and thereby induce protective effects against cancer. DNA replication initiation protein MCM10 has been previously observed to have an increased expression in different cancer subtypes. However, MCM10 association with genomic instability, cancer development and its relevant mechanisms remain unknown. Here, using a breast cancer model, we observe a significant association of MCM10 with the degree of clinical aggressiveness in breast cancer patients. By overexpression of MCM10, we observed that MCM10 promotes tumorigenic properties in immortal non-tumorigenic mammary cells by increasing proliferation, shortening the cell cycle, and promoting tumorigenic characters in in-vivo mimicking conditions. Furthermore, overexpression of MCM10 is found to induce accumulation of ssDNA followed by overexpression of ssDNA binding protein RPA2. Mesenchymal markers such as up-regulation of Vimentin, transcription factor Snail and Twist2, and the down-regulation of E-cadherin were observed in MCM10 overexpression cells. Overall, the findings of this study revealed a novel mechanism by which MCM10 promotes genomic instability and breast cancer progression, and effectively differentiates the active degree of breast cancer aggressiveness. Thus, MCM10 has the potential to be a clinically useful biomarker as well as a therapeutic target for future breast cancer treatment.


Subject(s)
Breast Neoplasms , Minichromosome Maintenance Proteins/metabolism , Breast Neoplasms/genetics , Cell Cycle , Cell Cycle Proteins/metabolism , DNA Replication , Female , Genomic Instability , Humans
SELECTION OF CITATIONS
SEARCH DETAIL