Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
J Sci Food Agric ; 104(13): 8059-8069, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38837400

ABSTRACT

BACKGROUND: Rice grain analogues with slow starch digestibility are commonly associated with an unsatisfactory texture, often leading to consumer dissatisfaction. Alginate encapsulation has been applied to reduce the digestibility of corn and potato starch. The fine molecular structures of rice starch can greatly determine its digestibility and texture. However, it remains unclear whether a combination of alginate encapsulation and varied starch molecular structures can be employed to create rice grain analogues that offer both slow starch digestibility and an appealing texture. RESULTS: For the first time, the present study constructed alginate-encapsulated rice beads (as a rice grain analogue). A wide range of starch digestion rates were found among alginate-encapsulated rice beads prepared with different rice varieties, and only certain rice varieties (e.g. Subei and Nanjing) were able to result in rice beads with slower starch digestibility than their parental rice kernels. More importantly, all rice beads showed a relatively softer texture compared to their parental rice kernels. Correlation analysis showed that starch digestion rate, hardness and stickiness were all positively correlated with the ratio of short-range amorphous regions in rice bead samples, as obtained from Fourier transform-infrared spectroscopy, but not with the relative crystallinity. CONCLUSION: Collectively, these results suggest that rice beads with slower starch digestion rate and softer texture could be obtained by choosing rice varieties that develop more short-range ordered structure after cooking. © 2024 Society of Chemical Industry.


Subject(s)
Alginates , Cooking , Digestion , Oryza , Starch , Oryza/chemistry , Oryza/metabolism , Starch/chemistry , Starch/metabolism , Alginates/chemistry , Seeds/chemistry , Seeds/metabolism , Spectroscopy, Fourier Transform Infrared
2.
Plant Foods Hum Nutr ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292418

ABSTRACT

The extrusion process, a vital technique for starch modification, is notably influenced by the moisture content (MC). This study aimed to elucidate the effect of varying MC levels (18, 22, 26, and 30%) on the structural and physicochemical characteristics of cassava flour during extrusion. Extrusion resulted in the fraction of degree of polymerization 13‒24, degree of branching, and molecular weight increased with increasing MC, with values of above indexes being 32.29%, 1.05%, and 1.21 × 105 g/mol, respectively, at a MC of 18%. This suggested that the degradation of amylopectin and amylose. Additionally, there was an increase in rapidly digestible starch (RDS) and a decrease in slowly digestible starch (SDS) in the extrudates in comparison to the native cassava flour. The extrusion of cassava flour at 18% MC exhibited the highest levels of RDS and SDS, reaching 64.52% and 4.06%, respectively. These findings indicated that low moisture extrusion could be a more effective method for disrupting the structure of cassava starch and enhancing the digestibility of cassava flour, offering valuable insights for the optimized use of cassava extrudates in various applications.

3.
Crit Rev Food Sci Nutr ; 63(23): 6412-6422, 2023.
Article in English | MEDLINE | ID: mdl-35075962

ABSTRACT

Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.


Subject(s)
Gastrointestinal Microbiome , Humans , Resistant Starch/metabolism , Starch/metabolism , Fermentation , Feces
4.
Crit Rev Food Sci Nutr ; 63(20): 4799-4816, 2023.
Article in English | MEDLINE | ID: mdl-34847797

ABSTRACT

Starch is a major part of the human diet and an important material for industrial utilization. The structure of starch granules is the subject of intensive research because it determines functionality, and hence suitability for specific applications. Starch granules are made up of a hierarchy of complex structural elements, from lamellae and amorphous regions to blocklets, growth rings and granules, which increase in scale from nanometers to microns. The complexity of these native structures changes with the processing of starch-rich ingredients into foods and other products. This review aims to provide a comprehensive review of analytical methods developed to characterize structure of starch granules, and their applications in analyzing the changes in starch structure as a result of processing, with particular consideration of the poorly understood short-range ordered structures in amorphous regions of granules.


Subject(s)
Food , Starch , Humans , Starch/chemistry
5.
J Sci Food Agric ; 103(4): 1651-1659, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36326592

ABSTRACT

BACKGROUND: Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS: A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION: This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.


Subject(s)
Amylose , Oryza , Amylose/chemistry , Digestion , Starch/chemistry , Amylopectin/chemistry , Dietary Supplements , Oryza/chemistry
6.
J Sci Food Agric ; 102(12): 5065-5076, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33709442

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) flour and processed traditional Peruvian quinoa breakfast foods were studied to evaluate the effect of extrusion and post-processing on protein properties, morphology and nutritional characteristics (amino acids and dietary fibers). RESULTS: The extrusion increased quinoa protein crosslinking and aggregation observed by size exclusion high-performance liquid chromatography and the amount of soluble fibers, as well as decreasing the amounts of insoluble fibers in the processed foods. The post-processing drying resulted in additional crosslinking of large protein fractions in the quinoa products. The microstructure of the extruded quinoa breakfast flakes and heat-post-processed samples studied by scanning electron microscopy and X-ray tomography differed greatly; post-drying induced formation of aerated protein microstructures in the heat-treated samples. Nanostructures revealed by small-angle and wide-angle X-ray scattering indicated that extrusion imparted morphological changes in the quinoa protein and starch (dominance of V-type). Overall, extrusion processing only reduced the content of most of the essential amino acids to a minor extent; the content of valine and methionine was reduced to a slightly greater extent, but the final products met the requirements of the Food and Drug Organization. CONCLUSION: This study presents innovative examples on how extrusion processing and post-processing heat treatment can be used to produce attractive future food alternatives, such as breakfast cereal flakes and porridge powder, from quinoa grains. Extrusion of quinoa flour into Peruvian foods was shown to be mostly impacted by the processing temperature and processing conditions used. Protein crosslinking increased due to extrusion and post-processing heating. Starch crystallinity decreased most when the product was dried after processing. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/chemistry , Dietary Fiber/analysis , Flour/analysis , Starch/chemistry , Temperature
7.
J Sci Food Agric ; 102(13): 5974-5983, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35445411

ABSTRACT

BACKGROUND: An increased demand for food has mirrored the increasing global population. Obesity and diabetes are two disorders induced by poor eating choices. Consequently, there is an urgent need to develop modified foods that can ameliorate such illnesses. The objective of this study was to explore the effect of Waxy genes on the structural and functional properties of starch, with the aim of improving food quality. Wild-type tetraploid wheat was compared with three mutants with different Waxy gene combinations. RESULTS: The proportion of B-type granules was higher in the mutants than in the wild-type (Wx-AB), and there were significant changes in the starch granule size, number, and phenotype in the Wx free mutant (Wx-ab). The lowest branch chain length was observed in Wx-ab, whereas Wx-AB had the highest branch chain length of DP ≥ 37. Wx-ab had the highest degree of crystallinity. The crystallinity trend followed the order Wx-ab>Wx-Ab>Wx-aB>Wx-AB. The amount of slowly digestible starch (SDS) was higher in native, gelatinized, and retrograded starch in the mutant. The amount of retrograded starch was closer to gelatinized starch than to native starch. CONCLUSION: Waxy proteins make a substantial contribution to starch structure. A lack of waxy proteins reduced the unit chains markedly compared with the control. Waxy proteins significantly affected the smaller and longer chains of starch. The lines with differing waxy composition had different effects on food digestion. The Wx-AB in native starch and Wx-Ab in gelatinized starch can control obesity and diabetes by slow-digesting carbohydrates and high resistance to digestion. © 2022 Society of Chemical Industry.


Subject(s)
Starch Synthase , Triticum , Obesity , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/chemistry , Starch Synthase/genetics , Starch Synthase/metabolism , Tetraploidy , Triticum/chemistry
8.
J Sci Food Agric ; 101(9): 3811-3818, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33314139

ABSTRACT

BACKGROUND: Rice eating quality largely dictates consumer preference, and the demand for new rice varieties with excellent eating quality from farmers is increasing. Identification of factors contributing to eating quality is helpful for developing high-quality rice varieties. RESULTS: Two groups of rice with different apparent amylose content (AACs) were used in this study. One group contained four varieties with low AACs (8.8-9.4%), whereas the other contained four traditional varieties with medium AACs (17.2-17.5%). The physicochemical properties, starch fine structure and crystallinity and storage protein composition of the two groups were analyzed. We found that, in both groups, the rice varieties with high eating quality had more short-chain amylopectin, lower glutelin and prolamin content, and a higher albumin content. In addition, the low-AAC varieties produced opaque endosperms, which may result from an increased number of pores in the center of starch granules. CONCLUSIONS: Both the fine structure of starch and the storage protein composition were closely related to rice eating quality. In both groups, short branch-chain amylopectin, short-chain amylopectin [degree of polymerization (DP) 6-12], and albumin had positive effects on eating quality. By contrast, long branch-chain amylopectin, long-chain amylopectin (DP 35-60), glutelin and prolamin had adverse effects on eating quality of rice. © 2020 Society of Chemical Industry.


Subject(s)
Oryza/chemistry , Seed Storage Proteins/chemistry , Starch/chemistry , Amylopectin/chemistry , Amylopectin/metabolism , Amylose/chemistry , Amylose/metabolism , Food Analysis , Humans , Oryza/classification , Oryza/metabolism , Seeds/chemistry , Seeds/classification , Seeds/metabolism , Starch/metabolism
9.
Compr Rev Food Sci Food Saf ; 20(3): 3061-3092, 2021 05.
Article in English | MEDLINE | ID: mdl-33798276

ABSTRACT

Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.


Subject(s)
Lens Plant , Starch , Amylopectin , Amylose , Viscosity
10.
Plant Mol Biol ; 103(3): 355-371, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32193789

ABSTRACT

KEYMESSAGE: Biphasic starch granules in maize ae mutant underwent the weak to strong SBEIIb-defective effect during endosperm development, leading to no birefringence in their exterior due to extended long branch-chains of amylopectin. Biphasic starch granules are usually detected regionally in cereal endosperm lacking starch branching enzyme (SBE). However, their molecular structure, formation mechanism, and regional distribution are unclear. In this research, biphasic starch granules were observed in the inner region of crown endosperm of maize ae mutant, and had poorly oriented structure with comb-like profiles in their exterior. The inner endosperm (IE) rich in biphasic starch granules and outer endosperm (OE) without biphasic starch granules were investigated. The starch had lower amylose content and higher proportion of long branch-chains of amylopectin in IE than in OE, and the exterior of biphasic starch granules had less amylose and more long branch-chains of amylopectin than the interior. Compared with OE, the expression pattern of starch synthesis related enzymes changed significantly in IE. The granule-bound starch synthase I activity within biphasic starch granules decreased slightly. The IE experienced more severe hypoxic stress than OE, and the up-regulated anaerobic respiration pathway indicated an increase in carbon consumption. The starch in IE underwent the SBEIIb-defective effect from weak to strong due to the lack of sufficient carbon inflow, leading to the formation of biphasic starch granules and their regional distribution in endosperm. The results provided information for understanding the biphasic starch granules.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/metabolism , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Starch/metabolism , Zea mays/enzymology , 1,4-alpha-Glucan Branching Enzyme/classification , 1,4-alpha-Glucan Branching Enzyme/genetics , Endosperm/enzymology , Endosperm/ultrastructure , Starch/ultrastructure
11.
Plant Biotechnol J ; 18(8): 1763-1777, 2020 08.
Article in English | MEDLINE | ID: mdl-31945237

ABSTRACT

Resistant starch (RS) is the portion of starch that escapes gastrointestinal digestion and acts as a substrate for fermentation of probiotic bacteria in the gut. Aside from enhancing gut health, RS contributes to a lower glycemic index. A genome-wide association study coupled with targeted gene association studies was conducted utilizing a diverse panel of 281 resequenced Indica rice lines comprising of ~2.2 million single nucleotide polymorphisms. Low-to-intermediate RS phenotypic variations were identified in the rice diversity panel, resulting in novel associations of RS to several genes associated with amylopectin biosynthesis and degradation. Selected rice lines encoding superior alleles of SSIIa with medium RS and inferior alleles with low RS groups were subjected to detailed transcriptomic, metabolomic, non-starch dietary fibre (DF), starch structural and textural attributes. The gene regulatory networks highlighted the importance of a protein phosphatase alongside multiple genes of starch metabolism. Metabolomics analyses resulted in the identification of several metabolite hubs (carboxylic acid, sugars and polyamines) in the medium RS group. Among DF, mannose and galactose from the water-insoluble fraction were found to be highly associated with low and medium RS lines, respectively. Starch structural analyses revealed that a moderate increase in RS is also linked to an elevation of amylose 1 and amylose 2 fractions. Although rice lines with medium RS content negatively affected textural and viscosity properties in comparison to low RS, the textural property of medium RS lines was in the same acceptable range as IR64, a rice mega variety popular in Asia.


Subject(s)
Oryza , Amylopectin , Amylose , Genome-Wide Association Study , Oryza/genetics , Starch , Viscosity
12.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977627

ABSTRACT

Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.


Subject(s)
Amylose/biosynthesis , Carbohydrate Metabolism/physiology , Endosperm/metabolism , Carbohydrate Conformation
13.
Plant Biotechnol J ; 17(12): 2259-2271, 2019 12.
Article in English | MEDLINE | ID: mdl-31033104

ABSTRACT

We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low-SBE potato tubers. HPLC-SEC and 1 H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild-type starch. Mutants with strong reductions in SBE2 protein alone had near-normal amylopectin chain-length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 µm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9-mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/genetics , CRISPR-Cas Systems , Plant Proteins/genetics , Solanum tuberosum/genetics , Amylopectin , CRISPR-Associated Protein 9 , Mutagenesis , Phenotype , Solanum tuberosum/enzymology , Starch
14.
J Sci Food Agric ; 98(3): 1008-1015, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28718948

ABSTRACT

BACKGROUND: Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. RESULTS: Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. CONCLUSION: Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry.


Subject(s)
Plant Extracts/chemistry , Starch/chemistry , Zea mays/growth & development , Amylopectin/chemistry , China , Hot Temperature , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Starch/metabolism , Viscosity , Zea mays/chemistry , Zea mays/metabolism
15.
Arch Biochem Biophys ; 596: 63-72, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26940263

ABSTRACT

Starch synthases SSI, SSII, and SSIII function in assembling the amylopectin component of starch, but their specific roles and means of coordination are not fully understood. Genetic analyses indicate regulatory interactions among SS classes, and physical interactions among them are known. The N terminal extension of cereal SSIII, comprising up to 1200 residues beyond the catalytic domain, is responsible at least in part for these interactions. Recombinant maize SSI, SSIIa, and full-length or truncated SSIII, were tested for functional interactions regarding enzymatic activity. Amino-terminal truncated SSIII exhibited reduced activity compared to full-length enzyme, and addition of the N terminus to the truncated protein stimulated catalytic activity. SSIII and SSI displayed a negative interaction that reduced total activity in a reconstituted system. These data demonstrate that SSIII is both a catalytic and regulatory factor. SSIII activity was reduced by approximately 50% after brief incubation at 45 °C, suggesting a role in reduced starch accumulation during growth in high temperatures. Buffer effects were tested to address a current debate regarding the SS mechanism. Glucan stimulated the SSIIa and SSIII reaction rate regardless of the buffer system, supporting the accepted mechanism in which glucosyl units are added to exogenous primer substrates.


Subject(s)
Plant Proteins/chemistry , Starch Synthase/chemistry , Zea mays/enzymology , Amylopectin/chemistry , Amylopectin/metabolism , Catalysis , Enzyme Stability/physiology , Hot Temperature , Plant Proteins/genetics , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Starch Synthase/genetics , Zea mays/genetics
16.
J Exp Bot ; 65(8): 2189-201, 2014 May.
Article in English | MEDLINE | ID: mdl-24634486

ABSTRACT

Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Starch Synthase/genetics , Starch/genetics , Triticum/anatomy & histology , Triticum/genetics , Endosperm/anatomy & histology , Endosperm/genetics , Endosperm/metabolism , Endosperm/ultrastructure , Microscopy, Electron, Scanning , Plant Proteins/metabolism , Seeds/anatomy & histology , Seeds/chemistry , Seeds/genetics , Seeds/ultrastructure , Starch/metabolism , Starch/ultrastructure , Starch Synthase/metabolism , Triticum/metabolism
17.
Int J Biol Macromol ; 280(Pt 3): 136004, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326617

ABSTRACT

The modification of starch through agricultural practices is becoming increasingly significant for producing healthy foodstuffs and raw materials for industrial applications, consequently gaining momentum in academic research. This study examined how three different planting densities influenced the distribution of granule sizes, multi-scale structural characteristics, and in vitro digestibility of maize starch. The results showed that planting density significantly enhanced grain yield and relative crystallinity, and significant increases were also observed in the contents of both rapidly and slowly digestible starch. The surface- and volume-weighted mean diameter of granules significantly increased under the medium level (6.75 × 104 plants ha-1), and then decreased under high planting density level. As planting density level increased, the amylose content, peak viscosity, and hardness varied from 23.3 to 26.4 %, from 1962 to 2659 mPa·s, and from 129.3 to 307.6 g, respectively. However, no change was found in crystalline structure of maize starch. These results indicated that optimizing planting density could effectively improve grain yield and starch characteristics of maize, with the best effect under the level of 6.75 × 104 plants ha-1.

18.
Food Chem X ; 21: 101103, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38268838

ABSTRACT

Resistant starch (RS) is the total amount of starch that is incompletely or not digested and absorbed in the small intestine. It plays a role similar to dietary fibre with beneficial effects for human health. In this study, the RS content of 129 wheat accessions was determined, and the relationship between the several starch physical properties and resistant starch content were analyzed. By comparing the total starch content, amylose starch content, starch chain length distribution, starch crystallization type, starch branching degree, and starch granule morphology between the high RS and low RS content wheat accessions, it was found that the amylose content and RS content were significantly positively correlated. However, in the range of chain length fb 3 (DP ≥ 37), there was a significant negative correlation between amylopectin content and RS content. The surface of starch granules became increasingly smooth as the content of RS increased.

19.
Int J Biol Macromol ; 280(Pt 4): 136080, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341319

ABSTRACT

To investigate the fine starch structure characteristics and formation mechanism of high-quality appearance soft rice, two high-quality and low-quality soft rice varieties (HA-SR and LA-SR, respectively) were selected. Differences in appearance quality, fine starch structure, and activity of key enzymes involved in starch synthesis during the grain-filling stage were compared. The results showed that compared with LA-SR, HA-SR were less chalky, more transparent, had larger starch grains, a lower content of shorter chains (DP 6-24), a higher content of longer chains (DP ≥ 25), lower relative crystallinity, fewer ordered structures, more amorphous structures and larger thicknesses of semi-crystalline lamellae. In terms of amylase activity during the grain-filling stage, the AGPase and GBSS activities of HA-SR were higher, and the SBE activity of HA-SR was lower compared to LA-SR. In conclusion, higher AGPase activity can produce a higher filling rate resulting in fuller starch grain in soft rice. Fuller starch grains reduce the chalkiness of soft rice. Higher AGPase and GBSS activities and lower SBE activity can result in soft rice with more long-branched and less short-branched amylopectin. Thus, soft rice has lower relative crystallinity and less ordered structure. These structures may facilitate reduce grain chalkiness and improve grain transparency.

20.
Int J Biol Macromol ; 256(Pt 2): 128465, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029893

ABSTRACT

Native starches are commonly modified for desired properties because of their limited applications. Among various modifications, microwave irradiation has been gaining strong interests and becoming a focal area to transform starch during the last few years. Such interests reside in microwave irradiation's high heating rates, lesser extent of loss in nutritional qualities, and so on when compared with other approaches. This review summaries the effects of microwave field on the structural (e.g. morphology characteristic, lamellae structure, crystallinity, and molecular structure) and physicochemical properties (e.g. pasting properties and gelatinization) of naturally existing starch derivatives. Different microwave-assisted chemical derivatizations can directly or indirectly affect starch structure from the macroscopic to the microscopic level, thereby resulting in various functionalities. Moreover, conventional starch modification processes can be optimized by applying microwave irradiation to obtain modified starch with high degree of substitution and low viscosity. The future research will help to better understand the structural changes of microwave-assisted starch chemical derivatization and thereby creating a wide range of functionalities.


Subject(s)
Microwaves , Starch , Starch/chemistry , Viscosity , Nutritive Value , Amylose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL