Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Appl Environ Microbiol ; 90(8): e0051424, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39082812

ABSTRACT

Despite their low quantity and abundance, the cellulolytic bacteria that inhabit the equine large intestine are vital to their host, as they enable the crucial use of forage-based diets. Fibrobacter succinogenes is one of the most important intestinal cellulolytic bacteria. In this study, Fibrobacter sp. HC4, one cellulolytic strain newly isolated from the horse cecum, was characterized for its ability to utilize plant cell wall fibers. Fibrobacter sp. HC4 consumed only cellulose, cellobiose, and glucose and produced succinate and acetate in equal amounts. Among genes coding for CAZymes, 26% of the detected glycoside hydrolases (GHs) were involved in cellulolysis. These cellulases belong to the GH5, GH8, GH9, GH44, GH45, and GH51 families. Both carboxymethyl cellulase and xylanase activities of Fibrobacter sp. HC4 were detected using the Congo red method and were higher than those of F. succinogenes S85, the type strain. The in vitro addition of Fibrobacter sp. HC4 to a fecal microbial ecosystem of horses with large intestinal acidosis significantly enhanced fibrolytic activity as measured by the increase in gas and volatile fatty acids production during the first 48 h. According to this, the pH decreased and the disappearance of dry matter increased at a faster rate with Fibrobacter sp. HC4. Our data suggest a high specialization of the new strain in cellulose degradation. Such a strain could be of interest for future exploitation of its probiotic potential, which needs to be further determined by in vivo studies.IMPORTANCECellulose is the most abundant of plant cell wall fiber and can only be degraded by the large intestine microbiota, resulting in the production of volatile fatty acids that are essential for the host nutrition and health. Consequently, cellulolytic bacteria are of major importance to herbivores. However, these bacteria are challenged by various factors, such as high starch diets, which acidify the ecosystem and reduce their numbers and activity. This can lead to an imbalance in the gut microbiota and digestive problems such as colic, a major cause of mortality in horses. In this work, we characterized a newly isolated cellulolytic strain, Fibrobacter sp. HC4, from the equine intestinal microbiota. Due to its high cellulolytic capacity, reintroduction of this strain into an equine fecal ecosystem stimulates hay fermentation in vitro. Isolating and describing cellulolytic bacteria is a prerequisite for using them as probiotics to restore intestinal balance.


Subject(s)
Cellulose , Feces , Fibrobacter , Animals , Cellulose/metabolism , Fibrobacter/genetics , Fibrobacter/enzymology , Fibrobacter/isolation & purification , Fibrobacter/metabolism , Horses , Feces/microbiology , Cellulase/metabolism , Cellulase/genetics , Cecum/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Cellobiose/metabolism
2.
Appl Environ Microbiol ; 90(8): e0091524, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38984844

ABSTRACT

Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE: Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.


Subject(s)
Cecum , Chickens , Gastrointestinal Microbiome , Metabolome , Polyethylene , Salmonella typhimurium , Animals , Chickens/microbiology , Cecum/microbiology , Gastrointestinal Microbiome/drug effects , Salmonella typhimurium/drug effects , Polyethylene/metabolism , Metabolome/drug effects , Microplastics , RNA, Ribosomal, 16S/genetics , Salmonella Infections, Animal/microbiology
3.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
4.
Pharmacol Res ; 205: 107231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815878

ABSTRACT

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Subject(s)
DNA, Mitochondrial , Mice, Inbred C57BL , Animals , DNA, Mitochondrial/genetics , Gastrointestinal Microbiome , Mice , Skin/metabolism , Skin/microbiology , Skin/pathology , Dermatitis/immunology , Dermatitis/microbiology , Dermatitis/genetics , Dermatitis/drug therapy , Dermatitis/metabolism , Inflammation/genetics , Inflammation/immunology , Disease Models, Animal , Male , Germ-Free Life , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/genetics , Cecum/microbiology , Chronic Disease , Female
5.
Article in English | MEDLINE | ID: mdl-38995185

ABSTRACT

The intestines of mice are colonized by diverse, as-yet-uncultivated bacteria. In this report, we describe the isolation, culture, genotypic and phenotypic characterization, as well as taxonomic classification of three novel anaerobic bacterial strains derived from the caecal contents of C57BL/6J male mice. According to the phenotypic and genotype-based polyphasic taxonomy, we propose three novel species within the family Oscillospiraceae. They are Acutalibacter caecimuris sp. nov. (type strain M00118T=CGMCC 1.18042T=KCTC 25739T), Acutalibacter intestini sp. nov. (type strain M00204T=CGMCC 1.18044T=KCTC 25741T) and Neglectibacter caecimuris sp. nov. (type strain M00184T=CGMCC 1.18043T=KCTC 25740T).


Subject(s)
Bacterial Typing Techniques , Cecum , DNA, Bacterial , Mice, Inbred C57BL , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Animals , Male , Cecum/microbiology , Mice , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Base Composition
6.
Dig Dis Sci ; 69(6): 2026-2043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622463

ABSTRACT

BACKGROUND: Gastrointestinal transit (GIT) is influenced by factors including diet, medications, genetics, and gut microbiota, with slow GIT potentially indicating a functional disorder linked to conditions, such as constipation. Although GIT studies have utilized various animal models, few effectively model spontaneous slow GIT. AIMS: We aimed to characterize the GIT phenotype of CFP/Yit (CFP), an inbred mouse strain with suggested slow GIT. METHODS: Female and male CFP mice were compared to Crl:CD1 (ICR) mice in GIT and assessed based on oral gavage of fluorescent-labeled 70-kDa dextran, feed intake, fecal amount, and fecal water content. Histopathological analysis of the colon and analysis of gut microbiota were conducted. RESULTS: CFP mice exhibited a shorter small intestine and a 1.4-fold longer colon compared to ICR mice. The median whole-GIT time was 6.0-fold longer in CFP mice than in ICR mice. CFP mice demonstrated slower gastric and cecal transits than ICR mice, with a median colonic transit time of 4.1 h (2.9-fold longer). CFP mice exhibited lower daily feed intakes and fecal amounts. Fecal water content was lower in CFP mice, apparently attributed to the longer colon. Histopathological analysis showed no changes in CFP mice, including tumors or inflammation. Moreover, CFP mice had a higher Firmicutes/Bacteroidota ratio and a relative abundance of Erysipelotrichaceae in cecal and fecal contents. CONCLUSIONS: This study indicates that CFP mice exhibit slow transit in the stomach, cecum, and colon. As a novel mouse model, CFP mice can contribute to the study of gastrointestinal physiology and disease.


Subject(s)
Gastrointestinal Transit , Animals , Gastrointestinal Transit/physiology , Female , Male , Mice , Gastrointestinal Microbiome/physiology , Feces/chemistry , Feces/microbiology , Mice, Inbred ICR , Colon/metabolism , Disease Models, Animal , Mice, Inbred Strains , Cecum/metabolism , Cecum/microbiology
7.
Vet Pathol ; 61(4): 653-663, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38140953

ABSTRACT

While the immunodeficient status of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and NSG-related mice provides utility for numerous research models, it also results in increased susceptibility to opportunistic pathogens. Over a 9-week period, a high rate of mortality was reported in a housing room of NSG and NSG-related mice. Diagnostics were performed to determine the underlying etiopathogenesis. Mice submitted for evaluation included those found deceased (n = 2), cage mates of deceased mice with or without diarrhea (n = 17), and moribund mice (n = 8). Grossly, mice exhibited small intestinal and cecal dilation with abundant gas and/or digesta (n = 18), serosal hemorrhage and congestion (n = 6), or were grossly normal (n = 3). Histologically, there was erosive to ulcerative enterocolitis (n = 7) of the distal small and large intestine or widespread individual epithelial cell death with luminal sloughing (n = 13) and varying degrees of submucosal edema and mucosal hyperplasia. Cecal dysbiosis, a reduction in typical filamentous bacteria coupled with overgrowth of bacterial rods, was identified in 18 of 24 (75%) mice. Clostridium spp. and Paeniclostridium sordellii were identified in 13 of 23 (57%) and 7 of 23 (30%) mice, respectively. Clostridium perfringens (7 of 23, 30%) was isolated most frequently. Toxinotyping of C. perfringens positive mice (n = 2) identified C. perfringens type A. Luminal immunoreactivity to several clostridial species was identified within lesioned small intestine by immunohistochemistry. Clinicopathologic findings were thus associated with overgrowth of various clostridial species, though direct causality could not be ascribed. A diet shift preceding the mortality event may have contributed to loss of intestinal homeostasis.


Subject(s)
Clostridium Infections , Enterocolitis , Animals , Mice , Enterocolitis/veterinary , Enterocolitis/microbiology , Enterocolitis/pathology , Clostridium Infections/veterinary , Clostridium Infections/pathology , Clostridium Infections/microbiology , Disease Models, Animal , Mice, Inbred NOD , Female , Clostridium/isolation & purification , Dysbiosis/veterinary , Dysbiosis/pathology , Male , Cecum/pathology , Cecum/microbiology
8.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39043449

ABSTRACT

Intestinal infections caused by non-typhoidal Salmonella spp., along with antimicrobial resistance spread are a major food safety concern worldwide. Here, we evaluate the potential of competitive exclusion products developed by anaerobic or aerobic conditions to control systemic infection, cecal colonization, fecal excretion, and improve the intestinal health in broilers challenged by Salmonella Heidelberg (SH). A total of 105 day-old chickens were randomly distributed into three experimental groups: A (untreated control), B (treated with anaerobic culture), and C (treated with aerobic culture). During 21 days, morphometric parameters of the small intestine were analyzed using microscopy, fecal excretions by cloacal swabs, systemic infection, and cecal colonization by colony-forming unit counts (CFU/g). The results indicated the lowest number of positive swabs (45.33%) recovered from Group C, followed by Group B (71.8%) and Group A (85.33%). The bacterial enumeration revealed the lowest amounts in Group C at the necropsy realized in 5-, 7-, and 14-days post-infection (DPI) (P = 0.0010, P = 0.0048, and P = 0.0094, respectively). Statistical differences between intestinal morphometrics were observed in the Group C at 21 DPI. Our results suggest that the product developed under aerobic conditions can improve intestinal health, protecting birds against SH.


Subject(s)
Cecum , Chickens , Poultry Diseases , Salmonella Infections, Animal , Animals , Chickens/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Cecum/microbiology , Feces/microbiology , Salmonella enterica/growth & development , Salmonella enterica/drug effects , Salmonella/growth & development , Anti-Bacterial Agents/pharmacology
9.
Int J Food Sci Nutr ; 75(4): 369-384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38389248

ABSTRACT

The high-fat diet would lead to excessive fat storage in the liver to form metabolic dysfunction-associated steatotic liver disease (MASLD), and the trend is burgeoning. The aim of the study is to investigate the effects of chlorogenic acid (CGA) on metabolites and gut microorganisms in MASLD mice induced by a high-fat diet. In comparison to the HF group, the TC (total cholesterol), TG (total triglycerides), LDL-C (low-density lipoprotein cholesterol), AST (aspartate aminotransferase) and ALT (alanine transaminase) levels were reduced after CGA supplement. CGA led to an increase in l-phenylalanine, l-tryptophan levels, and promoted fatty acid degradation. CGA increased the abundance of the Muribaculaceae, Bacteroides and Parabacteroides. Changes in these microbes were significantly associated with the liver metabolites level and lipid profile level. These data suggest important roles for CGA regulating the gut microbiota, liver and caecum content metabolites, and TG-, TC- and LDL-C lowering function.


Subject(s)
Chlorogenic Acid , Diet, High-Fat , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Chlorogenic Acid/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Male , Mice , Liver/metabolism , Liver/drug effects , Fatty Liver , Cecum/microbiology , Cecum/metabolism , Dietary Supplements , Triglycerides/blood , Triglycerides/metabolism
10.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928209

ABSTRACT

Complex gut microbiota increases chickens' resistance to enteric pathogens. However, the principles of this phenomenon are not understood in detail. One of the possibilities for how to decipher the role of gut microbiota in chickens' resistance to enteric pathogens is to systematically characterise the gene expression of individual gut microbiota members colonising the chicken caecum. To reach this aim, newly hatched chicks were inoculated with bacterial species whose whole genomic sequence was known. Total protein purified from the chicken caecum was analysed by mass spectrometry, and the obtained spectra were searched against strain-specific protein databases generated from known genomic sequences. Campylobacter jejuni, Phascolarctobacterium sp. and Sutterella massiliensis did not utilise carbohydrates when colonising the chicken caecum. On the other hand, Bacteroides, Mediterranea, Marseilla, Megamonas, Megasphaera, Bifidobacterium, Blautia, Escherichia coli and Succinatimonas fermented carbohydrates. C. jejuni was the only motile bacterium, and Bacteroides mediterraneensis expressed the type VI secretion system. Classification of in vivo expression is key for understanding the role of individual species in complex microbial populations colonising the intestinal tract. Knowledge of the expression of motility, the type VI secretion system, and preference for carbohydrate or amino acid fermentation is important for the selection of bacteria for defined competitive exclusion products.


Subject(s)
Amino Acids , Chickens , Gastrointestinal Microbiome , Type VI Secretion Systems , Animals , Chickens/microbiology , Amino Acids/metabolism , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Carbohydrate Metabolism , Cecum/microbiology , Cecum/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics
11.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000356

ABSTRACT

The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome , Metabolome , Metformin , Metformin/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/drug therapy , Mice , Metabolome/drug effects , Male , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Hypoglycemic Agents/pharmacology , Mice, Inbred C57BL , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Colon/metabolism , Colon/drug effects , Colon/microbiology , Metabolomics/methods
12.
J Sci Food Agric ; 104(9): 5474-5485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38391155

ABSTRACT

BACKGROUND: Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS: By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION: The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animal Feed , Campylobacter Infections , Campylobacter jejuni , Cecum , Chickens , Fermentation , Histidine , Lactobacillus , Tryptophan , Animals , Chickens/microbiology , Animal Feed/analysis , Campylobacter jejuni/metabolism , Cecum/microbiology , Cecum/metabolism , Tryptophan/metabolism , Lactobacillus/metabolism , Campylobacter Infections/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Histidine/metabolism , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Biosynthetic Pathways , Dietary Supplements/analysis , Brassica rapa/microbiology , Brassica rapa/chemistry , Brassica napus/microbiology
13.
J Sci Food Agric ; 104(10): 6262-6275, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38466088

ABSTRACT

BACKGROUND: Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS: The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION: Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.


Subject(s)
Antidiarrheals , Antioxidants , Cecum , Diarrhea , Gastrointestinal Microbiome , Intestinal Mucosa , Rutin , Weaning , Animals , Swine/metabolism , Swine/growth & development , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Cecum/microbiology , Cecum/metabolism , Intestinal Mucosa/metabolism , Diarrhea/microbiology , Diarrhea/diet therapy , Diarrhea/veterinary , Antidiarrheals/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Swine Diseases/microbiology , Swine Diseases/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Animal Feed/analysis , Jejunum/metabolism , Jejunum/microbiology , Dietary Supplements/analysis , Male , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Intestinal Barrier Function
14.
J Sci Food Agric ; 104(12): 7656-7667, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38770921

ABSTRACT

BACKGROUND: Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS: The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION: Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.


Subject(s)
Animal Feed , Antioxidants , Cecum , Chickens , Flavonoids , Gastrointestinal Microbiome , Intestines , Plant Leaves , Animals , Chickens/growth & development , Chickens/immunology , Chickens/microbiology , Chickens/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/administration & dosage , Gastrointestinal Microbiome/drug effects , Plant Leaves/chemistry , Flavonoids/administration & dosage , Flavonoids/pharmacology , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Animal Feed/analysis , Intestines/drug effects , Intestines/microbiology , Intestines/immunology , Dietary Supplements/analysis , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Male , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/genetics , Immunoglobulin M/blood , Immunoglobulin A/blood , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Bambusa/chemistry , Interleukin-10/blood , Interleukin-10/metabolism , Sasa/chemistry
15.
Br Poult Sci ; 65(4): 403-414, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38578279

ABSTRACT

1. The objective of this study was to test the dose response of dietary supplementation with algae extracts rich in marine-sulphated polysaccharides (MSP1 and MSP2) on the growing performance, body composition at slaughter and caecal microbiota of broiler chickens.2. Male broiler Ross 308 chicks 1-d-old were distributed into eight groups, a control group (unsupplemented), four groups supplemented with increasing doses of algae extract MSP1 (40, 81, 121 and 162 g/ton feed) and three groups supplemented with increasing doses of algae extract MSP2 (40, 81 and 162 g/ton feed). Each group comprised six pens of 56 chickens.3. All chickens were reared under challenging conditions, i.e. high rearing density of 42 kg/m2, fed growing and finishing diets containing, palm oil, rye and high levels of wheat and subjected to short daily fasting periods. The growth performance was recorded during rearing. At 10, 22 and 31 d of age, 12 chickens per group were euthanised to collect the caecal contents and determine microbiota composition and short-chain fatty acid levels. At d 35, the quality of litter and the condition of feathers, footpads and tarsals were scored. At d 36, 7 chickens per pen were slaughtered under commercial conditions to determine carcass composition and breast meat quality (ultimate pH and colour).4. Algal extract MSP1 increased the weight of the caeca and butyrate concentration in the caeca at d 22 (p ≤ 0.05). It increased the ultimate pH of breast fillet measured after slaughter at d 36 (p ≤ 0.05). Moreover, the group receiving 162 g/t MSP1 had a more diverse microbiota at d22. However, algal extract MSP2 had negligible effect on the different measured parameters.


Subject(s)
Animal Feed , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Animals , Chickens/growth & development , Chickens/microbiology , Chickens/physiology , Dietary Supplements/analysis , Animal Feed/analysis , Diet/veterinary , Cecum/microbiology , Male , Gastrointestinal Microbiome/drug effects , Dose-Response Relationship, Drug , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Body Composition/drug effects , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation
16.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 816-838, 2024 May.
Article in English | MEDLINE | ID: mdl-38324000

ABSTRACT

Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.


Subject(s)
Animal Feed , Cecum , Chickens , Diet , Dietary Supplements , Eucommiaceae , Plant Bark , Plant Extracts , Animals , Eucommiaceae/chemistry , Animal Feed/analysis , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Cecum/microbiology , Diet/veterinary , Plant Bark/chemistry , Animal Nutritional Physiological Phenomena , Gastrointestinal Microbiome/drug effects
17.
J Environ Sci (China) ; 144: 225-235, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802233

ABSTRACT

Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.


Subject(s)
Cecum , Coturnix , Microplastics , Polystyrenes , Animals , Microplastics/toxicity , Polystyrenes/toxicity , Cecum/drug effects , Cecum/microbiology , Coturnix/immunology , Gastrointestinal Microbiome/drug effects
19.
Poult Sci ; 103(3): 103386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176372

ABSTRACT

The investigation examined the use of willow leaf extract (WLE) on broiler chickens, examining carcass characteristics, cecal microbiota, antioxidants, and blood parameters. In 4 groups of 300 chicks, a basal diet was given for 5 wk, and the first treatment was basal diet (C). The diets for the remaining 3 treatments (WLE150, WLE300, and WLE450) contained 150, 300, and 450 mg of willow leaf extract /kg, respectively. The study found that birds fed willow leaf extract supplements had significantly greater body weight (BW), body weight gain (BWG), and enhanced feed conversion ratio (FCR) vs. the control group. Birds fed at 450 mg/kg food showed the greatest growth features, carcass weight, liver weight, lower abdominal fat, better low-density lipoprotein (LDL), and high-density lipoprotein (HDL) concentrations, and highest hematological characteristics. Chickens fed diets supplemented with varied doses of willow leaf extract showed significantly increased antioxidant enzyme activity, with higher amounts of glutathione peroxidase (GPx) activity, superoxide dismutase (SOD), total antioxidant capacity (TAC), and lower malondialdehyde (MDA). However, in the study, birds fed a diet supplemented with 450 mg of willow leaf extract per kg meal showed a significant drop of 13.02%, which found no significant variations in hazardous bacteria (Escherichia coli) across 2 treatments (WLE150 and WLE300). In addition, the study discovered that birds fed with varied doses of willow leaf extract had fewer cecum infections (Staphylococci aureus). We conclude that using willow at a level of 450 mg/kg diet can significantly enhance the BWG, FCR, antioxidant levels and beneficial bacteria activity besides the condition of broiler chicken's general health.


Subject(s)
Chickens , Salix , Animals , Antioxidants/metabolism , Salix/metabolism , Cecum/microbiology , Plant Extracts/pharmacology , Body Weight
20.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38439638

ABSTRACT

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Subject(s)
Cecum , Resistant Starch , Solanum tuberosum , Animals , Mice , Cecum/metabolism , Cecum/microbiology , Diet, Western , Gene Expression , Microbiota , Nutrition Surveys , Resistant Starch/metabolism , Solanum tuberosum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL