Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.101
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 31: 107-35, 2013.
Article in English | MEDLINE | ID: mdl-23516981

ABSTRACT

Fibrosis is the production of excessive amounts of connective tissue, i.e., scar formation, in the course of reactive and reparative processes. Fibrosis develops as a consequence of various underlying diseases and presents a major diagnostically and therapeutically unsolved problem. In this review, we postulate that fibrosis is always a sequela of inflammatory processes and that the many different causes of fibrosis all channel into the same final stereotypical pathways. During the inflammatory phase, both innate and adaptive immune mechanisms are operative. This concept is exemplified by fibrotic diseases that develop as a consequence of tissue damage, primary inflammatory diseases, fibrotic alterations induced by foreign body implants, "spontaneous" fibrosis, and tumor-associated fibrotic changes.


Subject(s)
Fibroblasts/immunology , Fibroblasts/pathology , Myofibroblasts/immunology , Myofibroblasts/pathology , Adaptive Immunity , Animals , Cell Proliferation , Cell Transdifferentiation/immunology , Fibrosis , Humans , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology
2.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31983537

ABSTRACT

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Subject(s)
Astrocytes/metabolism , Carcinogenesis/metabolism , Cell Transdifferentiation , Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Paracrine Communication , Animals , Cell Lineage , Cerebellar Neoplasms/pathology , Disease Models, Animal , Female , Hedgehog Proteins/metabolism , Heterografts , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Male , Medulloblastoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Tumor Microenvironment
3.
Cell ; 183(7): 1867-1883.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33248023

ABSTRACT

Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.


Subject(s)
Biliary Atresia/immunology , Biliary Atresia/therapy , Liver/immunology , Animals , Antigens, CD20/metabolism , B-Lymphocytes/immunology , Biliary Atresia/blood , Biliary Atresia/drug therapy , Biopsy , CX3C Chemokine Receptor 1/metabolism , Cell Death , Cell Line , Cell Proliferation , Cell Transdifferentiation , Child , Child, Preschool , Cohort Studies , Cytotoxicity, Immunologic , Disease Models, Animal , Female , Humans , Immunoglobulin G/metabolism , Infant , Inflammation/pathology , Killer Cells, Natural/immunology , Kupffer Cells/pathology , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/complications , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Lymphocyte Depletion , Lymphopoiesis , Male , Mice, Inbred BALB C , Phagocytosis , RNA/metabolism , Rituximab/administration & dosage , Rituximab/pharmacology , Rituximab/therapeutic use , Rotavirus/physiology , Single-Cell Analysis , Th1 Cells/immunology , Th17 Cells/immunology
4.
Cell ; 178(1): 135-151.e19, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31251913

ABSTRACT

Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Cell Transdifferentiation/genetics , DNA Damage/genetics , DNA Repair/genetics , Mammary Glands, Animal/pathology , Animals , BRCA1 Protein/metabolism , Breast Neoplasms/chemically induced , Breast Neoplasms/pathology , Cell Differentiation/genetics , Cell Transformation, Neoplastic , Disease Models, Animal , Epithelial Cells/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Transcription Factor HES-1/metabolism , Transfection
5.
Nat Rev Mol Cell Biol ; 22(6): 410-424, 2021 06.
Article in English | MEDLINE | ID: mdl-33619373

ABSTRACT

The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Epigenesis, Genetic/genetics , Animals , Cell Differentiation/genetics , Cell Transdifferentiation/genetics , Cell Transdifferentiation/physiology , Cellular Reprogramming/genetics , Humans
6.
Annu Rev Cell Dev Biol ; 35: 433-452, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31340126

ABSTRACT

Cellular reprogramming experiments from somatic cell types have demonstrated the plasticity of terminally differentiated cell states. Recent efforts in understanding the mechanisms of cellular reprogramming have begun to elucidate the differentiation trajectories along the reprogramming processes. In this review, we focus mainly on direct reprogramming strategies by transcription factors and highlight the variables that contribute to cell fate conversion outcomes. We review key studies that shed light on the cellular and molecular mechanisms by investigating differentiation trajectories and alternative cell states as well as transcription factor regulatory activities during cell fate reprogramming. Finally, we highlight a few concepts that we believe require attention, particularly when measuring the success of cell reprogramming experiments.


Subject(s)
Cell Transdifferentiation/physiology , Cellular Reprogramming/genetics , Epigenesis, Genetic/genetics , Transcription Factors/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Transdifferentiation/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Signal Transduction/genetics , Transcription Factors/genetics
7.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-27916275

ABSTRACT

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Subject(s)
Artemisinins/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Disease Models, Animal , Receptors, GABA-A/metabolism , Signal Transduction , Animals , Artemether , Artemisinins/administration & dosage , Carrier Proteins/metabolism , Cell Transdifferentiation/drug effects , Cells, Cultured , Diabetes Mellitus/drug therapy , Diabetes Mellitus, Type 1/pathology , Gene Expression Profiling , Homeodomain Proteins/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/drug effects , Membrane Proteins/metabolism , Mice , Protein Stability/drug effects , Rats , Single-Cell Analysis , Transcription Factors/metabolism , Zebrafish , gamma-Aminobutyric Acid/metabolism
8.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30028641

ABSTRACT

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Subject(s)
Hepatic Stellate Cells/metabolism , Inflammation/genetics , Neoplasms/genetics , Pancreatic Stellate Cells/metabolism , Cell Transdifferentiation/genetics , Hepatic Stellate Cells/pathology , Humans , Inflammation/pathology , Liver/metabolism , Liver/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neoplasms/pathology , Pancreas/injuries , Pancreas/metabolism , Pancreas/pathology , Pancreatic Stellate Cells/pathology , Tumor Microenvironment/genetics , Wound Healing
9.
Nature ; 630(8015): 166-173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778114

ABSTRACT

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Subject(s)
Cell Transdifferentiation , Hepatocytes , Liver Diseases , Liver , Humans , Biliary Tract/cytology , Biliary Tract/metabolism , Biliary Tract/pathology , Biopsy , Cell Plasticity , Chronic Disease , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/pathology , Hepatocytes/metabolism , Hepatocytes/cytology , Hepatocytes/pathology , Insulin/metabolism , Liver/pathology , Liver/metabolism , Liver/cytology , Liver Diseases/pathology , Liver Diseases/metabolism , Liver Regeneration , Organoids/metabolism , Organoids/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , TOR Serine-Threonine Kinases/metabolism
10.
Immunity ; 52(3): 431-433, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187514

ABSTRACT

In a recent issue of Cell, Yao et al. use a unique genetic strategy to study sonic hedgehog-medulloblastoma. Their results reveal a complex network in the tumor microenvironment involving the trans-differentiation of cancer cells into astrocytes to fuel tumor growth.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Cell Transdifferentiation , Ecosystem , Hedgehog Proteins , Humans , Tumor Microenvironment
11.
Nat Rev Mol Cell Biol ; 17(7): 413-25, 2016 07.
Article in English | MEDLINE | ID: mdl-26979497

ABSTRACT

Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.


Subject(s)
Adult Stem Cells/physiology , Cell Dedifferentiation , Cell Transdifferentiation , Animals , Cell Transformation, Neoplastic , Humans , Neoplasms/pathology , Regeneration , Signal Transduction
12.
Nature ; 606(7914): 570-575, 2022 06.
Article in English | MEDLINE | ID: mdl-35614218

ABSTRACT

The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.


Subject(s)
Blood Vessels , Cell Transdifferentiation , Lymphatic Vessels , Animal Fins/cytology , Animals , Blood Vessels/cytology , Cell Lineage , Endothelial Cells/cytology , Lymphatic Vessels/cytology , Zebrafish
13.
Am J Hum Genet ; 111(8): 1673-1699, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39084224

ABSTRACT

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Transcriptional Activation , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Neurons/metabolism , Neurons/cytology , RNA/genetics , RNA/metabolism , CRISPR-Cas Systems
14.
Am J Hum Genet ; 111(5): 841-862, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38593811

ABSTRACT

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Sequence Analysis, RNA , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Sequence Analysis, RNA/methods , Neurons/metabolism , Neurons/cytology , Transcriptome , Reproducibility of Results , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , RNA-Seq/methods , Female , Male
15.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39045613

ABSTRACT

Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates, including zebrafish, can robustly regenerate hair cells after severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here, we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and we observed gradual regeneration with correct spatial patterning over a 2-week period following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.


Subject(s)
Cell Transdifferentiation , Ear, Inner , Hair Cells, Auditory , Regeneration , Stem Cells , Zebrafish , Animals , Regeneration/physiology , Ear, Inner/cytology , Stem Cells/cytology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Animals, Genetically Modified , Larva/cytology
16.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958026

ABSTRACT

Thymic epithelial cells (TECs) are crucial to the ability of the thymus to generate T cells for the adaptive immune system in vertebrates. However, no in vitro system for studying TEC function exists. Overexpressing the transcription factor FOXN1 initiates transdifferentiation of fibroblasts into TEC-like cells (iTECs) that support T-cell differentiation in culture or after transplant. In this study, we have characterized iTEC programming at the cellular and molecular level in mouse to determine how it proceeds, and have identified mechanisms that can be targeted for improving this process. These data show that iTEC programming consists of discrete gene expression changes that differ early and late in the process, and that iTECs upregulate markers of both cortical and medullary TEC (cTEC and mTEC) lineages. We demonstrate that promoting proliferation enhances iTEC generation, and that Notch inhibition allows the induction of mTEC differentiation. Finally, we show that MHCII expression is the major difference between iTECs and fetal TECs. MHCII expression was improved by co-culturing iTECs with fetal double-positive T-cells. This study supports future efforts to improve iTEC generation for both research and translational uses.


Subject(s)
Cell Differentiation , Epithelial Cells , Fibroblasts , Forkhead Transcription Factors , Thymus Gland , Animals , Epithelial Cells/metabolism , Epithelial Cells/cytology , Thymus Gland/cytology , Thymus Gland/metabolism , Thymus Gland/embryology , Fibroblasts/metabolism , Fibroblasts/cytology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Cell Proliferation , Cell Transdifferentiation , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Coculture Techniques , Receptors, Notch/metabolism
17.
Development ; 151(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39250534

ABSTRACT

During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.


Subject(s)
Cell Transdifferentiation , Transcription Factors , Trophoblasts , Humans , Trophoblasts/cytology , Trophoblasts/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Female , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Blastocyst/metabolism , Blastocyst/cytology , Pregnancy , Cell Differentiation
18.
Plant Cell ; 36(10): 4309-4322, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39163271

ABSTRACT

Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Wall , Cellulose , Lignin , Protoplasts , Xylans , Xylem , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/metabolism , Xylem/metabolism , Xylem/genetics , Xylem/cytology , Xylans/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protoplasts/metabolism , Cellulose/metabolism , Lignin/metabolism , Cell Transdifferentiation , Mutation , Gene Expression Regulation, Plant , Transcription Factors
19.
Nature ; 597(7878): 715-719, 2021 09.
Article in English | MEDLINE | ID: mdl-34526722

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths worldwide1. Studies in human tissues and in mouse models have suggested that for many cancers, stem cells sustain early mutations driving tumour development2,3. For the pancreas, however, mechanisms underlying cellular renewal and initiation of PDAC remain unresolved. Here, using lineage tracing from the endogenous telomerase reverse transcriptase (Tert) locus, we identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment. During homeostasis, these TERThigh acinar cells renew the pancreas by forming expanding clones of acinar cells, whereas randomly marked acinar cells do not form these clones. Specific expression of mutant Kras in TERThigh acinar cells accelerates acinar clone formation and causes transdifferentiation to ductal pre-invasive pancreatic intraepithelial neoplasms by upregulating Ras-MAPK signalling and activating the downstream kinase ERK (phospho-ERK). In resected human pancreatic neoplasms, we find that foci of phospho-ERK-positive acinar cells are common and frequently contain activating KRAS mutations, suggesting that these acinar regions represent an early cancer precursor lesion. These data support a model in which rare TERThigh acinar cells may sustain KRAS mutations, driving acinar cell expansion and creating a field of aberrant cells initiating pancreatic tumorigenesis.


Subject(s)
Acinar Cells/cytology , Carcinogenesis , Pancreas/cytology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Transdifferentiation , Cell Transformation, Neoplastic/genetics , Homeostasis , Humans , MAP Kinase Signaling System , Mice , Mutation , Pancreas/pathology , Pancreas/physiology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Telomerase/genetics
20.
Mol Cell ; 76(3): 453-472.e8, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31519520

ABSTRACT

MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.


Subject(s)
Cell Transdifferentiation , Cellular Reprogramming , Chromatin Assembly and Disassembly , Chromatin/metabolism , Fibroblasts/metabolism , Muscle Development , MyoD Protein/metabolism , Myoblasts, Skeletal/metabolism , Animals , Binding Sites , Cell Line , Cell Transdifferentiation/genetics , Chromatin/genetics , Female , Gene Expression Regulation, Developmental , Humans , Mice , Muscle Development/genetics , MyoD Protein/genetics , Nucleic Acid Conformation , Phenotype , Protein Binding , Structure-Activity Relationship , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL