Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.170
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 17(11): 1263-1272, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27668800

ABSTRACT

Regions of the normal arterial intima predisposed to atherosclerosis are sites of ongoing monocyte trafficking and also contain resident myeloid cells with features of dendritic cells. However, the pathophysiological roles of these cells are poorly understood. Here we found that intimal myeloid cells underwent reverse transendothelial migration (RTM) into the arterial circulation after systemic stimulation of pattern-recognition receptors (PRRs). This process was dependent on expression of the chemokine receptor CCR7 and its ligand CCL19 by intimal myeloid cells. In mice infected with the intracellular pathogen Chlamydia muridarum, blood monocytes disseminated infection to the intima. Subsequent CCL19-CCR7-dependent RTM was critical for the clearance of intimal C. muridarum. This process was inhibited by hypercholesterolemia. Thus, RTM protects the normal arterial intima, and compromised RTM during atherogenesis might contribute to the intracellular retention of pathogens in atherosclerotic lesions.


Subject(s)
Chemokine CCL19/metabolism , Chlamydia muridarum/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Receptors, CCR7/metabolism , Transendothelial and Transepithelial Migration , Tunica Intima/immunology , Tunica Intima/metabolism , Animals , CD11c Antigen/metabolism , Chlamydia Infections/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/virology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gene Expression , Gene Expression Profiling , Lipopolysaccharides/immunology , Male , Mice , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , RNA, Messenger/genetics , Signal Transduction , Toll-Like Receptors/metabolism , Tunica Intima/microbiology
2.
PLoS Pathog ; 20(1): e1011983, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271477

ABSTRACT

The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , CD4-Positive T-Lymphocytes , Chlamydia Infections , Chlamydia muridarum , Homeodomain Proteins , Animals , Female , Mice , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Chlamydia Infections/immunology , Chlamydia muridarum/physiology , Interleukin-10/metabolism , Mice, Inbred C57BL , Th1 Cells/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Homeodomain Proteins/metabolism
3.
J Infect Dis ; 229(6): 1637-1647, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38147361

ABSTRACT

BACKGROUND: The pathogenesis of Chlamydia trachomatis is associated with the induction of the host inflammatory response; however, the precise underlying molecular mechanisms remain poorly understood. METHODS: CT622, a T3SS effector protein, has an important role in the pathogenesis of C trachomatis; however, whether CT622 can induce a host inflammatory response is not understood. Our findings demonstrate that CT622 induces the expression of interleukins 6 and 8 (IL-6 and IL-8). Mechanistically, these effects involve the activation of the MAPK/NF-κB signaling pathways (mitogen-activated protein kinase/nuclear factor κB). RESULTS: Interestingly, we demonstrated that the suppression of toll-like receptor 4 using small interfering RNA markedly reduced the phosphorylation of ERK, p38, JNK, and IκBα, concomitant with a significant decrease in IL-6 and IL-8 secretion. Conversely, disruption of toll-like receptor 2 abrogated the CT622-induced upregulation of IL-8 and activation of ERK, whereas IL-6 expression and p38, JNK, and IκBα phosphorylation were unaffected. CONCLUSIONS: Taken together, these results indicate that CT622 contributes to the inflammatory response through the toll-like receptor 2/4-mediated MAPK/NF-κB pathways, which provides insight into the molecular pathology of C trachomatis infection.


Subject(s)
Chlamydia trachomatis , Cytokines , NF-kappa B , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Humans , Chlamydia trachomatis/immunology , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , THP-1 Cells , Cytokines/metabolism , Signal Transduction , Interleukin-6/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia Infections/metabolism , Interleukin-8/metabolism , Type III Secretion Systems/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Phosphorylation
4.
Infect Immun ; 92(1): e0042123, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38047677

ABSTRACT

Following an oral inoculation, Chlamydia muridarum descends to the mouse large intestine for long-lasting colonization. However, a mutant C. muridarum that lacks the plasmid-encoded protein pGP3 due to an engineered premature stop codon (designated as CMpGP3S) failed to do so even following an intrajejunal inoculation. This was because a CD4+ T cell-dependent immunity prevented the spread of CMpGP3S from the small intestine to the large intestine. In the current study, we found that mice deficient in IL-22 (IL-22-/-) allowed CMpGP3S to spread from the small intestine to the large intestine on day 3 after intrajejunal inoculation, indicating a critical role of IL-22 in regulating the chlamydial spread. The responsible IL-22 is produced by CD4+ T cells since IL-22-/- mice were rescued to block the CMpGP3S spread by donor CD4+ T cells from C57BL/6J mice. Consistently, CD4+ T cells lacking IL-22 failed to block the spread of CMpGP3S in Rag2-/- mice, while IL-22-competent CD4+ T cells did block. Furthermore, mice deficient in cathelicidin-related antimicrobial peptide (CRAMP) permitted the CMpGP3S spread, but donor CD4+ T cells from CRAMP-/- mice were still sufficient for preventing the CMpGP3S spread in Rag2-/- mice, indicating a critical role of CRAMP in regulating chlamydial spreading, and the responsible CRAMP is not produced by CD4+ T cells. Thus, the IL-22-producing CD4+ T cell-dependent regulation of chlamydial spreading correlated with CRAMP produced by non-CD4+ T cells. These findings provide a platform for further characterizing the subset(s) of CD4+ T cells responsible for regulating bacterial spreading in the intestine.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Interleukin-22 , T-Lymphocytes , Animals , Mice , CD4-Positive T-Lymphocytes , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia muridarum/physiology , Interleukin-22/immunology , Intestine, Large , Intestine, Small , Mice, Inbred C57BL , T-Lymphocytes/immunology
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001624

ABSTRACT

Anatomical positioning of memory lymphocytes within barrier tissues accelerates secondary immune responses and is thought to be essential for protection at mucosal surfaces. However, it remains unclear whether resident memory in the female reproductive tract (FRT) is required for Chlamydial immunity. Here, we describe efficient generation of tissue-resident memory CD4 T cells and memory lymphocyte clusters within the FRT after vaginal infection with Chlamydia Despite robust establishment of localized memory lymphocytes within the FRT, naïve mice surgically joined to immune mice, or mice with only circulating immunity following intranasal immunization, were fully capable of resisting Chlamydia infection via the vaginal route. Blocking the rapid mobilization of circulating memory CD4 T cells to the FRT inhibited this protective response. These data demonstrate that secondary protection in the FRT can occur in the complete absence of tissue-resident immune cells. The ability to confer robust protection to barrier tissues via circulating immune memory provides an unexpected opportunity for vaccine development against infections of the FRT.


Subject(s)
Antibodies, Bacterial/biosynthesis , CD4-Positive T-Lymphocytes/immunology , Chlamydia Infections/prevention & control , Chlamydia muridarum/immunology , Genitalia, Female/immunology , Immunization/methods , Administration, Intranasal , Administration, Intravaginal , Animals , Antigens, Bacterial/administration & dosage , Bacterial Vaccines/administration & dosage , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/microbiology , Cell Movement/drug effects , Cell Movement/immunology , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia muridarum/drug effects , Chlamydia muridarum/growth & development , Chlamydia muridarum/pathogenicity , Female , Genitalia, Female/drug effects , Genitalia, Female/microbiology , Immunity, Mucosal/drug effects , Immunologic Memory/drug effects , Mice , Parabiosis/methods
6.
PLoS Pathog ; 17(2): e1009295, 2021 02.
Article in English | MEDLINE | ID: mdl-33635920

ABSTRACT

To date, no reports have linked the multifunctional protein, staphylococcal nuclease domain-containing protein 1 (SND1), to host defense against intracellular infections. In this study, we investigated the role and mechanisms of SND1, by using SND1 knockout (SND1-/-) mice, in host defense against the lung infection of Chlamydia muridarum, an obligate intracellular bacterium. Our data showed that SND1-/- mice exhibited significantly greater body weight loss, higher organism growth, and more severe pathological changes compared with wild-type mice following the infection. Further analysis showed significantly reduced Chlamydia-specific Th1/17 immune responses in SND1-/- mice after infection. Interestingly, the dendritic cells (DCs) isolated from SND1-/- mice showed lower costimulatory molecules expression and IL-12 production, but higher IL-10 production compared with those from wild-type control mice. In the DC-T cell co-culture system, DCs isolated from SND1-/- infected mice showed significantly reduced ability to promote Chlamydia-specific IFN-γ producing Th1 cells but enhanced capacity to induce CD4+T cells into Foxp3+ Treg cells. Adoptive transfer of DCs isolated from SND1-/- mice, unlike those from wild-type control mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that SND1 plays an important role in host defense against intracellular bacterial infection, and suggest that SND1 can promote Th1/17 immunity and inhibit the expansion of Treg cells through modulation of the function of DCs.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Dendritic Cells/immunology , Endonucleases/physiology , Lung/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Female , Immunity, Cellular/immunology , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
J Immunol ; 206(7): 1586-1596, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33608454

ABSTRACT

The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-ß in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Interleukins/metabolism , Lung/immunology , Receptors, Interleukin-21/metabolism , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Female , Inflammation , Intracellular Space , Mice , Receptors, Interleukin-21/genetics , STAT3 Transcription Factor/genetics , Signal Transduction , T-Box Domain Proteins/genetics
8.
J Immunol ; 206(6): 1251-1265, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33504621

ABSTRACT

Recent studies have identified semaphorin 3E (Sema3E) as a novel mediator of immune responses. However, its function in immunity to infection has yet to be investigated. Using a mouse model of chlamydial lung infection, we show that Sema3E plays a significant role in the host immune response to the infection. We found that Sema3E is induced in the lung after chlamydial infection, and Sema3E deficiency has a detrimental impact on disease course, dendritic cell (DC) function, and T cell responses. Specifically, we found that Sema3E knockout (KO) mice exhibited higher bacterial burden, severe body weight loss, and pathological changes after Chlamydia muridarum lung infection compared with wild-type (WT) mice. The severity of disease in Sema3E KO mice was correlated with reduced Th1/Th17 cytokine responses, increased Th2 response, altered Ab response, and a higher number of regulatory CD4 T cells. Moreover, DCs isolated from Sema3E KO mice showed lower surface expression of costimulatory molecules and production of IL-12, but higher expression of PD-L1, PD-L2, and IL-10 production. Functional DC-T cell coculture studies revealed that DCs from infected Sema3E KO mice failed to induce Th1 and Th17 cell responses compared with DCs from infected WT mice. Upon adoptive transfer, mice receiving DCs from Sema3E KO mice, unlike those receiving DCs from WT mice, were not protected against challenge infection. In conclusion, our data evidenced that Sema3E acts as a critical factor for protective immunity against intracellular bacterial infection by modulating DC functions and T cell subsets.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chlamydia Infections/immunology , Dendritic Cells/immunology , Semaphorins/metabolism , T-Lymphocyte Subsets/immunology , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/metabolism , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia muridarum/immunology , Coculture Techniques , Dendritic Cells/transplantation , Disease Models, Animal , Humans , Lung/immunology , Lung/microbiology , Lung/pathology , Mice , Mice, Knockout , Semaphorins/genetics , Severity of Illness Index , T-Lymphocyte Subsets/metabolism
9.
Infect Immun ; 90(1): e0045321, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34724387

ABSTRACT

Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a first hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a second hit). In the current study, a critical role of CD8+ T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J mice and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8+ T cells from naive C57BL/6J mice rescued the ability of recipient OT1 mice to develop hydrosalpinx when naive CD8+ T cells were transferred at the time of infection with Chlamydia. However, when the transfer was delayed for 2 weeks or longer after the Chlamydia infection, naive CD8+ T cells no longer promoted hydrosalpinx. Nevertheless, CD8+ T cells from mice immunized against Chlamydia still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8+ T cells must be primed within 2 weeks after Chlamydia infection to be pathogenic, but, once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia-primed CD4+ T cells failed to promote chlamydial induction of pathology in OT1 mice. This study optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia-specific CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chlamydia Infections/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia muridarum/immunology , Animals , Antigens, Bacterial/immunology , Biopsy , Disease Models, Animal , Disease Susceptibility , Female , Host-Pathogen Interactions/immunology , Mice , Salpingitis/etiology , Salpingitis/metabolism , Salpingitis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
10.
Mol Cell Biochem ; 477(2): 621-625, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34860348

ABSTRACT

Intrauterine infections are an urgent problem of modern neonatology. One of the causes of intrauterine infective foetal lesions is physiological immunosuppression. The purpose of this study is to investigate the cytokine status in newborns infected with perinatal infections, depending on their body weight. The study examined 145 newborns. Taking into account their body weight, they were divided into 2 groups: main and secondary. The study was conducted in the immunological laboratory of the Medical Centre of Marat Ospanov West Kazakhstan Medical University in the city of Aktobe, with the determination of the level of IgM and IgG to the herpes simplex virus (HSV) types 1, 2, cytomegalovirus (CMV), and chlamydia using the MULTISKANASCENT analyser with the "Chemo" T system. The main results of this study are the predominance of the anti-inflammatory component in both normal weight and underweight infants, which is evidence of the Th-cell-mediated immune response prevalence. The applied value of this study lies in the possibility of applying its results in practice to obtain effective methods to counteract the occurrence and development of intrauterine infections.


Subject(s)
Chlamydia Infections/immunology , Cytokines/immunology , Infant, Newborn, Diseases/immunology , Infant, Premature/immunology , Virus Diseases/immunology , Chlamydia Infections/microbiology , Chlamydia Infections/virology , Female , Humans , Infant, Newborn , Infant, Newborn, Diseases/microbiology , Infant, Newborn, Diseases/virology , Inflammation/immunology , Inflammation/microbiology , Inflammation/virology , Male , Virus Diseases/microbiology , Virus Diseases/virology
11.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012556

ABSTRACT

This study aims to assess the potential association of MBL2 gene single nucleotide polymorphisms (SNPs) to Chlamydia trachomatis infection. We analysed a selected sample of 492 DNA and serum specimens from Dutch Caucasian women. Women were categorized into four groups of infection status based on the results of DNA and antibody tests for C. trachomatis: Ct-DNA+/IgG+, Ct-DNA+/IgG−, Ct-DNA−/IgG+, and Ct-DNA−/IgG−. We compared six MBL2 SNPs (−619G > C (H/L), −290G > C (Y/X), −66C > T (P/Q), +154C > T (A/D), +161A > G (A/B), and +170A > G (A/C)) and their respective haplotypes in relation to these different subgroups. The −619C (L) allele was less present within the Ct-DNA−/IgG+ group compared with the Ct-DNA−/IgG− group (OR = 0.49; 95% CI: 0.28−0.83), while the +170G (C) allele was observed more in the Ct-DNA+/IgG+ group as compared with the Ct-DNA−/IgG− group (OR = 2.4; 95% CI: 1.1−5.4). The HYA/HYA haplotype was more often present in the Ct-DNA−/IgG− group compared with the Ct-DNA+/IgG+ group (OR = 0.37; 95% CI: 0.16−0.87). The +170G (C) allele was associated with increased IgG production (p = 0.048) in C. trachomatis PCR-positive women. This study shows associations for MBL in immune reactions to C. trachomatis. We showed clear associations between MBL2 genotypes, haplotypes, and individuals' stages of C. trachomatis DNA and IgG positivity.


Subject(s)
Chlamydia Infections , Immunity, Humoral , Mannose-Binding Lectin , Antibodies, Bacterial , Chlamydia Infections/genetics , Chlamydia Infections/immunology , Chlamydia trachomatis , Female , Haplotypes , Humans , Immunoglobulin G , Mannose-Binding Lectin/genetics , Netherlands , Polymorphism, Single Nucleotide
12.
J Infect Dis ; 224(12 Suppl 2): S47-S55, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34396406

ABSTRACT

Chlamydia trachomatis-genital infection in women can be modeled in mice using Chlamydia muridarum. Using this model, it has been shown that the cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1α lead to irreversible tissue damage in the oviducts. In this study, we investigated the contribution of TNFα on IL-1α synthesis in infected epithelial cells. We show that C muridarum infection enhanced TNFα-induced IL-1α expression and release in a mouse epithelial cell line. In addition to IL-1α, several TNFα-induced inflammatory genes were also highly induced, and infection enhanced TNF-induced cell death. In the mouse model of genital infection, oviducts from mice lacking the TNFα receptor displayed minimal staining for IL-1α compared with wild-type oviducts. Our results suggest TNFα and IL-1α enhance each other's downstream effects resulting in a hyperinflammatory response to chlamydial infection. We propose that biologics targeting TNF-induced IL-1α synthesis could be used to mitigate tissue damage during chlamydial infection.


Subject(s)
Cell Death , Chlamydia Infections , Chlamydia muridarum/immunology , Interleukin-1alpha , Tumor Necrosis Factor-alpha , Animals , Chlamydia Infections/immunology , Chlamydia Infections/metabolism , Epithelial Cells , Female , Interleukin-1alpha/immunology , Interleukin-1alpha/metabolism , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
J Infect Dis ; 224(12 Suppl 2): S86-S95, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34396415

ABSTRACT

Detection of anti-Chlamydia trachomatis (Ctr) antibodies is compromised by cross-reactivity and poor sensitivity of classic Ctr-antigens. We discovered 48 strongly reactive peptide antigens of Ctr-specific B-cell epitopes from 21 immunodominant proteins. In this study, we review the utility of peptide assays for diagnosis of Ctr infections. By combining many of these Ctr-specific B-cell epitopes from several proteins in separate or mixed multipeptide assays, they achieved vastly superior assay sensitivity and specificity over standard enzyme-linked immunosorbent assays. Such multipeptide assays eliminate cross-reactivities (false positives) and correct for stochastic gaps in antibody responses (false negatives). More importantly, we developed and validated a novel microarray platform in which hundreds of peptides from many proteins are spotted in a single reaction well. This offers the possibility of high-throughput screening of many candidate peptides for routine serological fingerprinting of Ctr infections. Discovery of optimal sets of antibody responses that associate with clinical pelvic inflammatory disease (PID) may identify diagnostically useful PID biomarker antigens.


Subject(s)
Antibodies, Bacterial/blood , Chlamydia Infections/microbiology , Chlamydia trachomatis/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Epitopes, B-Lymphocyte , Pelvic Inflammatory Disease/microbiology , Chlamydia Infections/diagnosis , Chlamydia Infections/epidemiology , Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , Female , Humans , Immunoenzyme Techniques , Peptides/immunology
14.
Georgian Med News ; (322): 115-121, 2022 Jan.
Article in Russian | MEDLINE | ID: mdl-35134772

ABSTRACT

Aim - to identify deviations in immune parameters in patients with reactive chlamydial spondyloarthritis, allowing more targeted correction of immune status and improve the quality of treatment of these patients. A comparative immunological examination of 14 patients with reactive spondyloarthritis of chlamydial etiology before and after specific treatment and practically healthy people was carried out. CIC, lymphocytotoxic and granulocytotoxic antibodies, including autoimmune, LIF including autoantigens (cartilage, bone, sinewy), neutrophilic leukocytes, lymphocytes, IL-1, IL-4, IL-6, TNF-α, CD-3, CD-4, CD-8, CD-25, Ig A, G, M. The immune status of patients before treatment was characterized by a perverse immune response, which was characterized by hyperactivation of the T-lymphocytic link of immunity, impaired suppressive link of the immune system, a tendency to autoimmune aggression, incomplete anti-infectious immunity, and chronic inflammatory process. Antichlamydial treatment with the eradication of the pathogen within 1 month led to a partial normalization of the immune response, normalization of the neutrophilic / lymphocytic ratio and the amount of granulocytotoxic and lymphocytotoxic antibodies. Desensitization of the organism to autoantigens (cartilage and synovial tissue) was observed. Comprehensive analysis of immunological parameters before and after treatment in patients with reactive spondyloarthritis of chlamydial etiology allows monitoring the effectiveness of the treatment and increases its effectiveness.


Subject(s)
Chlamydia Infections/immunology , Spondylarthritis , Antibodies/immunology , Autoantigens , Case-Control Studies , Chlamydia Infections/complications , Cytokines/immunology , Humans , Spondylarthritis/immunology , Spondylarthritis/microbiology , T-Lymphocytes/cytology
15.
Infect Immun ; 89(11): e0080020, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34424753

ABSTRACT

Innate lymphoid cells (ILCs) comprise five distinct subsets. ILCs are found at mucosal barriers and may fight invading pathogens. Chlamydia is an intracellular bacterium that infects the mucosa of the genital tract and can cause severe tissue damage. Here, we used a mouse infection model with Chlamydia muridarum to measure the reaction of genital tract ILCs to the infection. Tissue-resident natural killer (NK) cells were the largest group in the uninfected female genital tract, and their number did not substantially change. Conventional NK cells were present in the greatest numbers during acute infection, while ILC1s continuously increased to high numbers. ILC2 and ILC3s were found at lower numbers that oscillated by a factor of 2 to 4. The majority of ILC3s transdifferentiated into ILC1s. NK cells and ILC1s produced gamma interferon (IFN-γ) and, rarely, tumor necrosis factor (TNF), but only early in the infection. Lack of B and T cells increased ILC numbers, while the loss of myeloid cells decreased them. ILCs accumulated to a high density in the oviduct, a main site of tissue destruction. ILC subsets are part of the inflammatory and immune reaction during infection with C. muridarum and may contribute to tissue damage during chlamydial infection.


Subject(s)
Chlamydia Infections/immunology , Genitalia, Female/immunology , Lymphocytes/immunology , Animals , Female , Immunity, Innate , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL
16.
Infect Immun ; 89(8): e0068520, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34001559

ABSTRACT

In response to stress, the obligate intracellular pathogen Chlamydia trachomatis stops dividing and halts its biphasic developmental cycle. The infectious, extracellular form of this bacterium is highly susceptible to killing by the host immune response, and by pausing development, Chlamydia can survive in an intracellular, "aberrant" state for extended periods of time. The relevance of these aberrant forms has long been debated, and many questions remain concerning how they contribute to the persistence and pathogenesis of the organism. Using reporter cell lines, fluorescence microscopy, and a dipeptide labeling strategy, we measured the ability of C. trachomatis to synthesize, assemble, and degrade peptidoglycan under various aberrance-inducing conditions. We found that all aberrance-inducing conditions affect chlamydial peptidoglycan and that some actually halt the biosynthesis pathway early enough to prevent the release of an immunostimulatory peptidoglycan component, muramyl tripeptide. In addition, utilizing immunofluorescence and electron microscopy, we determined that the induction of aberrance can detrimentally affect the development of the microbe's pathogenic vacuole (the inclusion). Taken together, our data indicate that aberrant forms of Chlamydia generated by different environmental stressors can be sorted into two broad categories based on their ability to continue releasing peptidoglycan-derived, immunostimulatory muropeptides and their ability to secrete effector proteins that are normally expressed at the mid- and late stages of the microbe's developmental cycle. Our findings reveal a novel, immunoevasive feature inherent to a subset of aberrant chlamydial forms and provide clarity and context to the numerous persistence mechanisms employed by these ancient, genetically reduced microbes.


Subject(s)
Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia trachomatis/physiology , Host-Pathogen Interactions/immunology , Biomarkers , Biosynthetic Pathways , Cell Line , Disease Susceptibility , Energy Metabolism , Humans , Stress, Physiological
17.
Infect Immun ; 89(3)2021 02 16.
Article in English | MEDLINE | ID: mdl-33257535

ABSTRACT

Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chlamydia Infections/immunology , Genitalia, Female/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Interferon-gamma/immunology , Mice, Inbred C57BL/immunology , Reproductive Tract Infections/immunology , Animals , Chlamydia muridarum , Female , Humans , Mice , Models, Animal
18.
Infect Immun ; 89(5)2021 04 16.
Article in English | MEDLINE | ID: mdl-33558321

ABSTRACT

Chlamydia trachomatis genital infection is the most common bacterial sexually transmitted disease worldwide. Previously, we reported that cold-induced stress results in immune suppression of mice that subsequently leads to increased intensity of Chlamydia muridarum genital infection. Furthermore, we demonstrated that stressed mice orally fed with active hexose-correlated compound (AHCC) have reduced shedding of C. muridarum from the genital tract. However, the mechanism of AHCC in reducing the organ load and changing the immune response in the stress model is not well known. This study evaluated infection and changes in immunological parameters of stressed AHCC-fed mice with or without C. muridarum genital infection. We hypothesized that AHCC feeding to stressed mice restores protective immune function and reduces susceptibility to C. muridarum genital infection. The results show that oral feeding of stressed mice with AHCC resulted in decreased shedding of C. muridarum from the genital tract, reduced production of plasma catecholamines, increased expression of T-bet and reduced GATA-3 in CD4+ T cells, increased production of interleukin-12 (IL-12) and interferon gamma (IFN-γ) and reduced production of IL-4 in CD4+ T cells, and enhanced expression of surface markers and costimulatory molecules of CD4+ T cells, bone marrow-derived dendritic cells (BMDCs), and natural killer cells. Coculturing of mature BMDCs with splenic CD4+ T cells led to the increased and decreased production of T helper 1 and T helper 2 cytokines, respectively. Overall, our results show that AHCC fosters the restoration of Th1 cytokine production while reducing Th2 cytokine production, which would promote C. muridarum clearance in the murine stress model.


Subject(s)
Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia muridarum/physiology , Cytokines/biosynthesis , Cytokines/genetics , Gene Expression Regulation/drug effects , Genitalia/microbiology , Hexoses/pharmacology , Animals , Chlamydia Infections/immunology , Chlamydia Infections/metabolism , Mice , Stress, Physiological
19.
Infect Immun ; 89(10): e0020521, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34227838

ABSTRACT

Chlamydia is known to both ascend to the upper genital tract and spread to the gastrointestinal tract following intravaginal inoculation. Gastrointestinal Chlamydia was recently reported to promote chlamydial pathogenicity in the genital tract since mice intravaginally inoculated with an attenuated Chlamydia strain, which alone failed to develop pathology in the genital tract, were restored to develop hydrosalpinx by intragastric coinoculation with wild-type Chlamydia. Gastrointestinal Chlamydia promoted hydrosalpinx via an indirect mechanism since Chlamydia in the gut did not directly spread to the genital tract lumen. In the current study, we further investigated the role of CD8+ T cells in the promotion of hydrosalpinx by gastrointestinal Chlamydia. First, we confirmed that intragastric coinoculation with wild-type Chlamydia promoted hydrosalpinx in mice that were inoculated with an attenuated Chlamydia strain in the genital tract 1 week earlier. Second, the promotion of hydrosalpinx by intragastrically coinoculated Chlamydia was blocked by depleting CD8+ T cells. Third, adoptive transfer of gastrointestinal Chlamydia-induced CD8+ T cells was sufficient for promoting hydrosalpinx in mice that were intravaginally inoculated with an attenuated Chlamydia strain. These observations have demonstrated that CD8+ T cells induced by gastrointestinal Chlamydia are both necessary and sufficient for promoting hydrosalpinx in the genital tract. The study has laid a foundation for further revealing the mechanisms by which Chlamydia-induced T lymphocyte responses (as a 2nd hit) promote hydrosalpinx in mice with genital Chlamydia-triggered tubal injury (as a 1st hit), a continuing effort in testing the two-hit hypothesis as a chlamydial pathogenic mechanism.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chlamydia Infections/immunology , Chlamydia/pathogenicity , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Genitalia, Female/immunology , Reproductive Tract Infections/immunology , Adoptive Transfer/methods , Animals , CD8-Positive T-Lymphocytes/microbiology , Cell Line, Tumor , Chlamydia/immunology , Chlamydia Infections/microbiology , Disease Models, Animal , Female , Genitalia, Female/microbiology , HeLa Cells , Humans , Mice , Mice, Inbred CBA , Reproductive Tract Infections/microbiology
20.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34125599

ABSTRACT

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Receptors, Immunologic/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology , Uterus/immunology , Adaptive Immunity/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cell Movement/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/immunology , Disease Models, Animal , Epithelium/immunology , Epithelium/metabolism , Epithelium/microbiology , Female , Genitalia, Female/immunology , Genitalia, Female/metabolism , Genitalia, Female/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Oviducts/immunology , Oviducts/metabolism , Oviducts/microbiology , Receptors, Immunologic/metabolism , Reproductive Tract Infections/immunology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Uterus/metabolism , Uterus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL