Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
PLoS Biol ; 19(10): e3001408, 2021 10.
Article in English | MEDLINE | ID: mdl-34695132

ABSTRACT

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Subject(s)
Erythrocytes/parasitology , Myristic Acid/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Lipoylation/drug effects , Merozoites/drug effects , Merozoites/metabolism , Parasites/drug effects , Parasites/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/ultrastructure , Solubility , Substrate Specificity/drug effects
2.
Nature ; 559(7713): 269-273, 2018 07.
Article in English | MEDLINE | ID: mdl-29973723

ABSTRACT

Aberrant activation of innate immune pathways is associated with a variety of diseases. Progress in understanding the molecular mechanisms of innate immune pathways has led to the promise of targeted therapeutic approaches, but the development of drugs that act specifically on molecules of interest remains challenging. Here we report the discovery and characterization of highly potent and selective small-molecule antagonists of the stimulator of interferon genes (STING) protein, which is a central signalling component of the intracellular DNA sensing pathway1,2. Mechanistically, the identified compounds covalently target the predicted transmembrane cysteine residue 91 and thereby block the activation-induced palmitoylation of STING. Using these inhibitors, we show that the palmitoylation of STING is essential for its assembly into multimeric complexes at the Golgi apparatus and, in turn, for the recruitment of downstream signalling factors. The identified compounds and their derivatives reduce STING-mediated inflammatory cytokine production in both human and mouse cells. Furthermore, we show that these small-molecule antagonists attenuate pathological features of autoinflammatory disease in mice. In summary, our work uncovers a mechanism by which STING can be inhibited pharmacologically and demonstrates the potential of therapies that target STING for the treatment of autoinflammatory disease.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Binding Sites , Cell Line , Cysteine/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/metabolism , Humans , Lipoylation/drug effects , Mice , Mice, Inbred C57BL , Protein Binding/drug effects , Signal Transduction/drug effects , Small Molecule Libraries/analysis , Small Molecule Libraries/metabolism
3.
J Neurosci ; 41(10): 2119-2134, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33526476

ABSTRACT

NMDARs are ligand-gated ion channels that cause an influx of Na+ and Ca2+ into postsynaptic neurons. The resulting intracellular Ca2+ transient triggers synaptic plasticity. When prolonged, it may induce excitotoxicity, but it may also activate negative feedback to control the activity of NMDARs. Here, we report that a transient rise in intracellular Ca2+ (Ca2+ challenge) increases the sensitivity of NMDARs but not AMPARs/kainate receptors to the endogenous inhibitory neurosteroid 20-oxo-5ß-pregnan-3α-yl 3-sulfate and to its synthetic analogs, such as 20-oxo-5ß-pregnan-3α-yl 3-hemipimelate (PAhPim). In cultured hippocampal neurons, 30 µm PAhPim had virtually no effect on NMDAR responses; however, following the Ca2+ challenge, it inhibited the responses by 62%; similarly, the Ca2+ challenge induced a 3.7-fold decrease in the steroid IC50 on recombinant GluN1/GluN2B receptors. The increase in the NMDAR sensitivity to PAhPim was dependent on three cysteines (C849, C854, and C871) located in the carboxy-terminal domain of the GluN2B subunit, previously identified to be palmitoylated (Hayashi et al., 2009). Our experiments suggested that the Ca2+ challenge induced receptor depalmitoylation, and single-channel analysis revealed that this was accompanied by a 55% reduction in the probability of channel opening. Results of in silico modeling indicate that receptor palmitoylation promotes anchoring of the GluN2B subunit carboxy-terminal domain to the plasma membrane and facilitates channel opening. Depalmitoylation-induced changes in the NMDAR pharmacology explain the neuroprotective effect of PAhPim on NMDA-induced excitotoxicity. We propose that palmitoylation-dependent changes in the NMDAR sensitivity to steroids serve as an acute endogenous mechanism that controls NMDAR activity.SIGNIFICANCE STATEMENT There is considerable interest in negative allosteric modulators of NMDARs that could compensate for receptor overactivation by glutamate or de novo gain-of-function mutations in neurodevelopmental disorders. By a combination of electrophysiological, pharmacological, and computational techniques we describe a novel feedback mechanism regulating NMDAR activity. We find that a transient rise in intracellular Ca2+ increases NMDAR sensitivity to inhibitory neurosteroids in a process dependent on GluN2B subunit depalmitoylation. These results improve our understanding of the molecular mechanisms of steroid action at the NMDAR and indeed of the basic properties of this important glutamate-gated ion channel and may aid in the development of therapeutics for treating neurologic and psychiatric diseases related to overactivation of NMDARs without affecting normal physiological functions.


Subject(s)
Lipoylation/physiology , Neuroprotection/physiology , Pregnanes/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , HEK293 Cells , Hippocampus/physiology , Humans , Lipoylation/drug effects , Male , Pregnanes/metabolism , Rats , Rats, Wistar
4.
Neurobiol Dis ; 158: 105479, 2021 10.
Article in English | MEDLINE | ID: mdl-34390831

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/toxicity , Lipoylation/drug effects , Lipoylation/genetics , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cysteine/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mutation , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Rats
5.
Biochem Soc Trans ; 48(1): 281-290, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31872231

ABSTRACT

The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.


Subject(s)
Acyltransferases/metabolism , B7-H1 Antigen/metabolism , Lipoylation/drug effects , Neoplasms/drug therapy , Receptor, Melanocortin, Type 1/metabolism , ras Proteins/metabolism , Animals , Cysteine/metabolism , Drug Discovery/methods , Humans , Lipoylation/physiology , Mice , Neoplasms/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Protein Processing, Post-Translational
6.
J Biol Chem ; 293(17): 6434-6448, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29540482

ABSTRACT

Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amides/pharmacology , Fibroblast Growth Factors/metabolism , Lipoylation/drug effects , MAP Kinase Signaling System/drug effects , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms, Experimental/metabolism , Propanolamines/pharmacology , Prostatic Neoplasms/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Fibroblast Growth Factors/genetics , Humans , Male , Membrane Proteins/genetics , Mice , Mice, SCID , NIH 3T3 Cells , Neoplasm Proteins/drug effects , Neoplasm Proteins/genetics , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/genetics , Receptors, Fibroblast Growth Factor/genetics
7.
J Cell Mol Med ; 22(4): 2117-2130, 2018 04.
Article in English | MEDLINE | ID: mdl-29377576

ABSTRACT

Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post-translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post-translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non-homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT-1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML-related protein, N-RAS. Wogonoside inhibited the palmitoylation of small GTPase N-RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N-RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside-induced nuclear translocation of PLSCR1 and illuminate the influence of N-RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.


Subject(s)
Flavanones/pharmacology , GTP Phosphohydrolases/metabolism , Glucosides/pharmacology , Leukemia, Myeloid, Acute/metabolism , Lipoylation , Membrane Proteins/metabolism , Phospholipid Transfer Proteins/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Lipoylation/drug effects , Protein Transport/drug effects , Thiolester Hydrolases/metabolism , Tumor Cells, Cultured
8.
J Am Chem Soc ; 140(50): 17374-17378, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30516377

ABSTRACT

Post-translational S-palmitoylation plays a central role in protein localization, trafficking, stability, aggregation, and cell signaling. Dysregulation of palmitoylation pathways in cells can alter protein function and is the cause of several diseases. Considering the biological and clinical importance of S-palmitoylation, tools for direct, in vivo modulation of this lipid modification would be extremely valuable. Here, we describe a method for the cleavage of native S-palmitoyl groups from proteins in living cells. Using a cell permeable, cysteine-functionalized amphiphile, we demonstrate the direct depalmitoylation of cellular proteins. We show that amphiphile-mediated depalmitoylation (AMD) can effectively cleave S-palmitoyl groups from the native GTPase HRas and successfully depalmitoylate mislocalized proteins in an infantile neuronal ceroid lipofuscinosis (INCL) disease model. AMD enables direct and facile depalmitoylation of proteins in live cells and has potential therapeutic applications for diseases such as INCL, where native protein thioesterase activity is deficient.


Subject(s)
Lipoylation/drug effects , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cysteine/analogs & derivatives , Cysteine/pharmacology , GAP-43 Protein/chemistry , GAP-43 Protein/metabolism , Humans , Lipopeptides/pharmacology , Protein Transport/drug effects , Proto-Oncogene Proteins p21(ras)/chemistry
9.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28724772

ABSTRACT

Herpes simplex virus 1 (HSV-1) UL20 plays a crucial role in the envelopment of the cytoplasmic virion and its egress. It is a nonglycosylated envelope protein that is regulated as a γ1 gene. Two-hybrid and pulldown assays demonstrated that UL20, but no other HSV-1 gene-encoded proteins, binds specifically to GODZ (also known as DHHC3), a cellular Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein. A catalytically inactive dominant-negative GODZ construct significantly reduced HSV-1 replication in vitro and affected the localization of UL20 and glycoprotein K (gK) and their interactions but not glycoprotein C (gC). GODZ is involved in palmitoylation, and we found that UL20 is palmitoylated by GODZ using a GODZ dominant-negative plasmid. Blocking of palmitoylation using 2-bromopalmitate (2-BP) affected the virus titer and the interaction of UL20 and gK but did not affect the levels of these proteins. In conclusion, we have shown that binding of UL20 to GODZ in the Golgi apparatus regulates trafficking of UL20 and its subsequent effects on gK localization and virus replication. We also have demonstrated that GODZ-mediated UL20 palmitoylation is critical for UL20 membrane targeting and thus gK cell surface expression, providing new mechanistic insights into how UL20 palmitoylation regulates HSV-1 infectivity.IMPORTANCE HSV-1 UL20 is a nonglycosylated essential envelope protein that is highly conserved among herpesviruses. In this study, we show that (i) HSV-1 UL20 binds to GODZ (also known as DHHC3), a Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein; (ii) a GODZ dominant-negative mutant and an inhibitor of palmitoylation reduced HSV-1 titers and altered the localization of UL20 and glycoprotein K; and (iii) UL20 is palmitoylated by GODZ, and this UL20 palmitoylation is required for HSV-1 infectivity. Thus, blocking of the interaction of UL20 with GODZ, using a GODZ dominant-negative mutant or possibly GODZ shRNA, should be considered a potential alternative therapy in not only HSV-1 but also other conditions in which GODZ processing is an integral component of pathogenesis.


Subject(s)
Acyltransferases/metabolism , Golgi Apparatus/virology , Herpesvirus 1, Human/growth & development , Viral Proteins/metabolism , Cell Line, Tumor , HeLa Cells , Herpes Simplex/virology , Humans , Lipoylation/drug effects , Palmitates/pharmacology , Protein Binding , Two-Hybrid System Techniques , Virus Replication/physiology
10.
Arch Biochem Biophys ; 644: 29-36, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29510087

ABSTRACT

Atg4 is essential for autophagosome formation and Atg8 recycle with the function of processing the precursor and the lipidated Atg8-family proteins. Abnormal autophagic activity is involved in a variety of pathophysiological diseases and ATG4B is of interest as a potential therapeutic target due to its key roles in autophagy process. So ATG4B inhibitors are highly needed. FMK-9a is the most potent inhibitor reported so far. In this study, we confirmed FMK-9a could suppress ATG4B activity in vitro and in cells, with an IC50 of 260 nM. Besides, FMK-9a could also attenuate the process of cleavage of pro-LC3 and the delipidation of LC3-PE. Importantly, FMK-9a could induce autophagy both in HeLa and MEF cells regardless of its inhibition on ATG4B activity. Moreover, FMK-9a induced autophagy required FIP200 and ATG5. In conclusion, we demonstrated that ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Thus, FMK-9a may plays multiple roles in autophagy process and cannot simply take it as an ATG4B inhibitor.


Subject(s)
Autophagy-Related Proteins , Autophagy/drug effects , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Animals , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , HeLa Cells , Humans , Lipoylation/drug effects , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
11.
Cereb Cortex ; 27(7): 3618-3629, 2017 07 01.
Article in English | MEDLINE | ID: mdl-27365300

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is associated with learning and cognitive dysfunctions and a high risk of developing schizophrenia. It has become increasingly clear that dendritic spine plasticity is tightly linked to cognition. Thus, understanding how genes involved in cognitive disorders affect synaptic networks is a major challenge of modern biology. Several studies have pointed to a spine density deficit in 22q11DS transgenic mice models. Using the LgDel mouse model, we first quantified spine deficit at different stages using electron microscopy. Next we performed repetitive confocal imaging over several days on hippocampal organotypic cultures of LgDel mice. We show no imbalanced ratio between daily spine formation and spine elimination, but a decreased spine life expectancy. We corrected this impaired spine stabilization process by overexpressing ZDHHC8 palmitoyltransferase, whose gene belongs to the LgDel microdeletion. Overexpression of one of its substrates, the cdc42 brain-specific variant, under a constitutively active form (cdc42-palm-CA) led to the same result. Finally, we could rescue spine density in vivo, in adult LgDel mice, by injecting pups with a vector expressing cdc42-palm-CA. This study reveals a new role of ZDHHC8-cdc42-palm molecular pathway in postsynaptic structural plasticity and provides new evidence in favor of the dysconnectivity hypothesis for schizophrenia.


Subject(s)
Dendritic Spines/metabolism , DiGeorge Syndrome/pathology , DiGeorge Syndrome/therapy , Hippocampus/cytology , cdc42 GTP-Binding Protein/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Acyltransferases/therapeutic use , Age Factors , Animals , Animals, Newborn , Dendritic Spines/ultrastructure , DiGeorge Syndrome/genetics , Disease Models, Animal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , In Vitro Techniques , Lipoylation/drug effects , Lipoylation/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/therapeutic use , Mice , Microscopy, Confocal , Microscopy, Electron , Models, Anatomic , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Culture Techniques , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transduction, Genetic , cdc42 GTP-Binding Protein/genetics
12.
Exp Parasitol ; 186: 17-23, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29409741

ABSTRACT

Lipoic acid (LA) is a cofactor of relevant enzymatic complexes including the glycine cleave system and 2-ketoacid dehydrogenases. Intervention on LA de novo synthesis or salvage could have pleiotropic deleterious effect in cells, making both pathways attractive for chemotherapy. We show that Trypanosoma cruzi was susceptible to treatment with LA analogues. 8-Bromo-octanic acid (BrO) inhibited the growth of epimastigote forms of both Dm28c and CL Brener strains, although only at high (chemotherapeutically irrelevant) concentrations. The methyl ester derivative MBrO, was much more effective, with EC50 values one order of magnitude lower (62-66 µM). LA did not bypass the toxic effect of its analogues. Small monocarboxylic acids appear to be poorly internalized by T. cruzi: [14C]-octanoic acid was taken up 12 fold less efficiently than [14C]-palmitic acid. Western blot analysis of lipoylated proteins allowed the detection of the E2 subunits of pyruvate dehydrogenase (PDH), branched chain 2-ketoacid dehydrogenase and 2-ketoglutarate dehydrogenase complexes. Growth of parasites in medium with 10 fold lower glucose content, notably increased PDH activity and the level of its lipoylated E2 subunit. Treatment with BrO (1 mM) and MBrO (0.1 mM) completely inhibited E2 lipoylation and all three dehydrogenases activities. These observations indicate the lack of specific transporters for octanoic acid and most probably also for BrO and LA, which is in agreement with the lack of a LA salvage pathway, as previously suggested for T. brucei. They also indicate that the LA synthesis/protein lipoylation pathway could be a valid target for drug intervention. Moreover, the free LA available in the host would not interfere with such chemotherapeutic treatments.


Subject(s)
Thioctic Acid/metabolism , Trypanosoma cruzi/metabolism , Blotting, Western , Caprylates/metabolism , Electrophoresis, Polyacrylamide Gel , Lipoylation/drug effects , Protozoan Proteins/metabolism , Thioctic Acid/analogs & derivatives , Thioctic Acid/biosynthesis , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development
13.
Proc Natl Acad Sci U S A ; 112(38): 11876-80, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351666

ABSTRACT

Palmitoylation is the posttranslational modification of proteins with a 16-carbon fatty acid chain through a labile thioester bond. The reversibility of protein palmitoylation and its profound effect on protein function suggest that this modification could play an important role as an intracellular signaling mechanism. Evidence that palmitoylation of proteins occurs with the kinetics required for signal transduction is not clear, however. Here we show that engagement of the Fas receptor by its ligand leads to an extremely rapid and transient increase in palmitoylation levels of the tyrosine kinase Lck. Lck palmitoylation kinetics are consistent with the activation of downstream signaling proteins, such as Zap70 and PLC-γ1. Inhibiting Lck palmitoylation not only disrupts proximal Fas signaling events, but also renders cells resistant to Fas-mediated apoptosis. Knockdown of the palmitoyl acyl transferase DHHC21 eliminates activation of Lck and downstream signaling after Fas receptor stimulation. Our findings demonstrate highly dynamic Lck palmitoylation kinetics that are essential for signaling downstream of the Fas receptor.


Subject(s)
Lipoylation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Signal Transduction , fas Receptor/metabolism , Acyltransferases/metabolism , Apoptosis/drug effects , Calcium/metabolism , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Enzyme Activation , HeLa Cells , Humans , Intracellular Space/metabolism , Jurkat Cells , Lipoylation/drug effects , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Palmitic Acid/metabolism , Phospholipase C gamma/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects , Staining and Labeling , T-Lymphocytes/metabolism , Temperature
14.
Postepy Biochem ; 64(3): 175-182, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30656902

ABSTRACT

Lipopolysaccharide (LPS, endotoxin) is the component of the outer membrane of Gramnegative bacteria which upon infection induces the body's inflammatory reaction facilitating eradication of pathogens. However, exaggerated reactions to LPS can lead to potentially deadly sepsis while chronic, low-grade inflammation is linked with the development of several metabolic diseases, like type 2 diabetes. These processes are initiated by the binding of LPS to CD14 protein and the TLR4/MD2 receptor complex located in the plasma membrane of immune cells and also by the activation of a cytoplasmic multi-protein complex called the inflammasome. Recent studies have shown that lipids of the plasma membrane and endomembranes are important regulators of LPS-triggered signaling pathways. In this review we summarize those data emphasizing the role of phosphatidylinositols and modification of proteins by palmitoylation. Dysregulation of the lipid-dependent steps of the LPS-induced signaling can lead to excessive production of cytokines during sepsis and metabolic diseases linked with endotoxemia.


Subject(s)
Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lipoylation/drug effects , Phosphatidylinositols/metabolism , Diabetes Mellitus, Type 2/metabolism , Endotoxemia/chemically induced , Endotoxemia/metabolism , Humans , Sepsis/chemically induced , Sepsis/metabolism , Signal Transduction/drug effects
15.
J Neurosci ; 36(29): 7562-8, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27445135

ABSTRACT

UNLABELLED: Synapses are specialized contacts between neurons. Synapse differentiation-induced gene I (SynDIG1) plays a critical role during synapse development to regulate AMPA receptor (AMPAR) and PSD-95 content at excitatory synapses. Palmitoylation regulates the localization and function of many synaptic proteins, including AMPARs and PSD-95. Here we show that SynDIG1 is palmitoylated, and investigate the effects of palmitoylation on SynDIG1 stability and localization. Structural modeling of SynDIG1 suggests that the membrane-associated region forms a three-helical bundle with two cysteine residues located at positions 191 and 192 in the juxta-transmembrane region exposed to the cytoplasm. Site-directed mutagenesis reveals that C191 and C192 are palmitoylated in heterologous cells and positively regulates dendritic targeting in neurons. Like PSD-95, activity blockade in a rat hippocampal slice culture increases SynDIG1 palmitoylation, which is consistent with our prior demonstration that SynDIG1 localization at synapses increases upon activity blockade. These data demonstrate that palmitoylation of SynDIG1 is regulated by neuronal activity, and plays a critical role in regulating its stability and subcellular localization, and thereby its function. SIGNIFICANCE STATEMENT: Palmitoylation is a reversible post-translation modification that has recently been recognized as playing a critical role in the localization and function of many synaptic proteins. Here we show that activity-dependent palmitoylation of the atypical AMPA receptor auxiliary transmembrane protein SynDIG1 regulates its stability and localization at synapses to regulate function and synaptic strength.


Subject(s)
Lipoylation/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hippocampus/cytology , In Vitro Techniques , Lipoylation/drug effects , Lipoylation/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Nerve Tissue Proteins/genetics , Neurons/drug effects , Organ Culture Techniques , Pregnancy , Protein Transport/genetics , Protein Transport/physiology , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Tetrodotoxin/pharmacology
16.
Biochim Biophys Acta ; 1858(9): 2152-2162, 2016 09.
Article in English | MEDLINE | ID: mdl-27349735

ABSTRACT

Dopamine D2 receptor (D2R) and D3 receptor (D3R) possess highly conserved amino acid sequences but this study showed that D3R was more extensively palmitoylated than D2R. Based on this finding, the molecular basis of this selective palmitoylation of D3R was determined and the roles of palmitoylation in the regulation of D3R functions were investigated. D3R was palmitoylated on the cysteine residue on its carboxyl terminus tail, the last amino acid residue of D3R, and an exchange of the carboxyl terminus tail between D2R and D3R (D2R-D3C and D3R-D2C) resulted in the switching of the palmitoylation phenotype. When the consensus site for palmitoylation was mutated or the palmitoylation of D3R was inhibited by treatment with 2-bromopalmitate (2BP), a palmitoylation blocker, cell-surface expression, PKC-mediated endocytosis, agonist affinity, and agonist-induced tolerance of D3R were all inhibited. However, these changes were not observed when D3R palmitoylation was inhibited by replacing its carboxyl tail with that of D2R (D3R-D2C) or when the palmitoylation of D2R-D3C was inhibited by treatment with 2BP. Overall, this study shows that D3R is palmitoylated more extensively than D2R even though the carboxyl terminus tails of D2R and D3R are highly homologous, and thus provides a new clue regarding the consensus sequence for palmitoylation. This study also shows that palmitoylation controls various functionalities of D3R only when the receptor is in the intact D3R configuration.


Subject(s)
Lipoylation/physiology , Protein Processing, Post-Translational/physiology , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , HEK293 Cells , Humans , Hydrocarbons, Brominated/pharmacology , Lipoylation/drug effects , Palmitic Acids/pharmacology , Protein Domains , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Processing, Post-Translational/drug effects , Receptors, Dopamine D2/genetics , Receptors, Dopamine D3/genetics
17.
Article in English | MEDLINE | ID: mdl-28533249

ABSTRACT

Soraphen A is a myxobacterial metabolite that blocks the acetyl-coenzyme A carboxylase of the host and was previously identified as a novel HIV inhibitor. Here, we report that soraphen A acts by reducing virus production and altering the gp120 virion content, impacting entry capacity and infectivity. These effects are partially reversed by addition of palmitic acid, suggesting that inhibition of HIV envelope palmitoylation is one of the mechanisms of antiviral action.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Macrolides/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , Acetyl-CoA Carboxylase/antagonists & inhibitors , Cell Line, Tumor , HIV Envelope Protein gp120/metabolism , Humans , Hydroxamic Acids/pharmacology , Lipoylation/drug effects , Myxococcales/metabolism , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Vorinostat
18.
J Cell Sci ; 128(1): 118-28, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25380825

ABSTRACT

The yeast Efr3p protein is a main regulator of the Stt4p phosphatidylinositol 4-kinase at contact sites between the endoplasmic reticulum and the plasma membrane. A mutation in its fly homologue Rbo, leads to diminished light responses in the eye attributed to progressively impaired PLC signaling. Here, we find that Efr3s plays a role in maintaining responsiveness to the type-I angiotensin II (AngII) receptors. siRNA-mediated depletion of EFR3A and EFR3B impaired the sustained phase of cytosolic Ca(2+) response to high concentration of AngII in HEK293 cells that express wild type but not truncated AGTR1 (AT1a receptor), missing the phosphorylation sites. Efr3 depletion had minimal effect on the recovery of plasma membrane phosphoinositides during stimulation, and AT1 receptors still underwent ligand-induced internalization. A higher level of basal receptor phosphorylation and a larger response was observed after stimulation. Moreover, Gq activation more rapidly desensitized after AngII stimulation in Efr3 downregulated cells. A similar but less pronounced effect of EFR3 depletion was observed on the desensitization of the cAMP response after stimulation with isoproterenol. These data suggest that mammalian Efr3s contribute to the control of the phosphorylation state and, hence, desensitization of AT1a receptors, and could affect responsiveness of G-protein-coupled receptors in higher eukaryotes.


Subject(s)
Cyclic AMP/metabolism , Lipoylation/physiology , Receptor, Angiotensin, Type 1/metabolism , Second Messenger Systems/physiology , Adrenergic beta-Agonists/pharmacology , Cyclic AMP/genetics , HEK293 Cells , Humans , Isoproterenol/pharmacology , Lipoylation/drug effects , Phosphorylation/drug effects , Receptor, Angiotensin, Type 1/genetics , Second Messenger Systems/drug effects
19.
Biochem Biophys Res Commun ; 493(1): 213-219, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28899783

ABSTRACT

Currently, there are no effective therapeutic strategies targeting Kras driven cancers, and therefore, identifying new targeted therapies and overcoming drug resistance have become paramount for effective long-term cancer therapy. We have found that reducing expression of the palmitoyl transferase DHHC20 increases cell death induced by the EGFR inhibitor gefitinib in Kras and EGFR mutant cell lines, but not MCF7 cells harboring wildtype Kras. We show that the increased gefitinib sensitivity in cancer cells induced by DHHC20 inhibition is mediated directly through loss of palmitoylation on a previously identified cysteine residue in the C-terminal tail of EGFR. We utilized an EGFR point mutant in which the palmitoylated cysteine 1025 is mutated to alanine (EGFRC1025A), that results in receptor activation. Expression of the EGFR mutant alone in NIH3T3 cells does not increase sensitivity to gefitinib-induced cell death. However, when EGFRC1025A is expressed in cells expressing activated KrasG12V, EGFR inhibitor induced cell death is increased. Surprisingly, lung cancer cells harboring the EGFR inhibitor resistant mutation, T790M, become sensitive to EGFR inhibitor treatment when DHHC20 is inhibited. Finally, the small molecule, 2-bromopalmitate, which has been shown to inhibit palmitoyl transferases, acts synergistically with gefitinib to induce cell death in the gefitinib resistant cell line NCI-H1975.


Subject(s)
Cysteine/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Neoplasms, Experimental/physiopathology , Proto-Oncogene Proteins p21(ras)/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cocarcinogenesis , Cysteine/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Gefitinib , Humans , Lipoylation/drug effects , Lipoylation/genetics , MCF-7 Cells , Membrane Proteins , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/administration & dosage , Quinazolines/pharmacology
20.
Biochem Soc Trans ; 45(4): 913-921, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28630138

ABSTRACT

The Ras proteins are well-known drivers of many cancers and thus represent attractive targets for the development of anticancer therapeutics. Inhibitors that disrupt the association of the Ras proteins with membranes by blocking the addition of the farnesyl lipid moiety to the Ras C-terminus failed in clinical trials. Here, we explore the possibility of targeting a second lipid modification, S-acylation, commonly referred to as palmitoylation, as a strategy to disrupt the membrane interaction of specific Ras isoforms. We review the enzymes involved in adding and removing palmitate from Ras and discuss their potential roles in regulating Ras tumorigenesis. In addition, we examine other proteins that affect Ras protein localization and may serve as future drug targets.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein Processing, Post-Translational/drug effects , Thiolester Hydrolases/antagonists & inhibitors , ras Proteins/metabolism , Acyltransferases/metabolism , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cysteine/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/therapeutic use , Humans , Hydrolysis/drug effects , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Lipoylation/drug effects , Molecular Targeted Therapy/trends , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/prevention & control , Protein Transport/drug effects , Thiolester Hydrolases/metabolism , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL