Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782785

ABSTRACT

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Subject(s)
Junctional Adhesion Molecule A , Lymphatic Vessels , Lymphedema , rho-Associated Kinases , Animals , Mice , Biomimetics , Cytokines/metabolism , Endothelial Cells/metabolism , Intercellular Junctions , Junctional Adhesion Molecule A/metabolism , Lymphatic Vessels/metabolism , Lymphedema/genetics , Lymphedema/metabolism , rho-Associated Kinases/metabolism
2.
Nature ; 572(7767): 62-66, 2019 08.
Article in English | MEDLINE | ID: mdl-31341278

ABSTRACT

Recent work has shown that meningeal lymphatic vessels (mLVs), mainly in the dorsal part of the skull, are involved in the clearance of cerebrospinal fluid (CSF), but the precise route of CSF drainage is still unknown. Here we reveal the importance of mLVs in the basal part of the skull for this process by visualizing their distinct anatomical location and characterizing their specialized morphological features, which facilitate the uptake and drainage of CSF. Unlike dorsal mLVs, basal mLVs have lymphatic valves and capillaries located adjacent to the subarachnoid space in mice. We also show that basal mLVs are hotspots for the clearance of CSF macromolecules and that both mLV integrity and CSF drainage are impaired with ageing. Our findings should increase the understanding of how mLVs contribute to the neuropathophysiological processes that are associated with ageing.


Subject(s)
Cerebrospinal Fluid/metabolism , Glymphatic System/anatomy & histology , Glymphatic System/physiology , Lymphatic Vessels/anatomy & histology , Lymphatic Vessels/physiology , Skull Base/anatomy & histology , Aging/pathology , Aging/physiology , Animals , Endothelial Cells/cytology , Endothelial Cells/pathology , Female , Forkhead Transcription Factors/metabolism , Glymphatic System/cytology , Glymphatic System/pathology , Homeodomain Proteins/metabolism , Lymphatic Vessels/cytology , Lymphatic Vessels/pathology , Lymphedema/metabolism , Lymphedema/pathology , Magnetic Resonance Imaging , Male , Mice , Subarachnoid Space/anatomy & histology , Time Factors , Tumor Suppressor Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
3.
Circ Res ; 131(2): e2-e21, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35701867

ABSTRACT

BACKGROUND: Mutations in PIEZO1 (Piezo type mechanosensitive ion channel component 1) cause human lymphatic malformations. We have previously uncovered an ORAI1 (ORAI calcium release-activated calcium modulator 1)-mediated mechanotransduction pathway that triggers lymphatic sprouting through Notch downregulation in response to fluid flow. However, the identity of its upstream mechanosensor remains unknown. This study aimed to identify and characterize the molecular sensor that translates the flow-mediated external signal to the Orai1-regulated lymphatic expansion. METHODS: Various mutant mouse models, cellular, biochemical, and molecular biology tools, and a mouse tail lymphedema model were employed to elucidate the role of Piezo1 in flow-induced lymphatic growth and regeneration. RESULTS: Piezo1 was found to be abundantly expressed in lymphatic endothelial cells. Piezo1 knockdown in cultured lymphatic endothelial cells inhibited the laminar flow-induced calcium influx and abrogated the flow-mediated regulation of the Orai1 downstream genes, such as KLF2 (Krüppel-like factor 2), DTX1 (Deltex E3 ubiquitin ligase 1), DTX3L (Deltex E3 ubiquitin ligase 3L,) and NOTCH1 (Notch receptor 1), which are involved in lymphatic sprouting. Conversely, stimulation of Piezo1 activated the Orai1-regulated mechanotransduction in the absence of fluid flow. Piezo1-mediated mechanotransduction was significantly blocked by Orai1 inhibition, establishing the epistatic relationship between Piezo1 and Orai1. Lymphatic-specific conditional Piezo1 knockout largely phenocopied sprouting defects shown in Orai1- or Klf2- knockout lymphatics during embryo development. Postnatal deletion of Piezo1 induced lymphatic regression in adults. Ectopic Dtx3L expression rescued the lymphatic defects caused by Piezo1 knockout, affirming that the Piezo1 promotes lymphatic sprouting through Notch downregulation. Consistently, transgenic Piezo1 expression or pharmacological Piezo1 activation enhanced lymphatic sprouting. Finally, we assessed a potential therapeutic value of Piezo1 activation in lymphatic regeneration and found that a Piezo1 agonist, Yoda1, effectively suppressed postsurgical lymphedema development. CONCLUSIONS: Piezo1 is an upstream mechanosensor for the lymphatic mechanotransduction pathway and regulates lymphatic growth in response to external physical stimuli. Piezo1 activation presents a novel therapeutic opportunity for preventing postsurgical lymphedema. The Piezo1-regulated lymphangiogenesis mechanism offers a molecular basis for Piezo1-associated lymphatic malformation in humans.


Subject(s)
Lymphatic Vessels , Lymphedema , Animals , Endothelial Cells/metabolism , Humans , Ion Channels/genetics , Ion Channels/metabolism , Lymphatic Vessels/metabolism , Lymphedema/metabolism , Mechanotransduction, Cellular/physiology , Mice , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063073

ABSTRACT

Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor C (VEGF-C) levels increase to induce lymphangiogenesis. Unfortunately, VEGF-C often fails to repair the lymphatic damage in lymphedema. The underlying mechanism contributing to lymphedema is not well understood. In this study, we found that surgery-induced tail lymphedema in a mouse model increased oxidative damage and cell death over 16 days. This corresponded with increased VEGF-C levels in mouse tail lymphedema tissue associated with macrophage infiltration. Similarly, in the plasma of patients with secondary lymphedema, we found a positive correlation between VEGF-C levels and redox imbalance. To determine the effect of oxidative stress in the presence or absence of VEGF-C, we found that hydrogen peroxide (H2O2) induced cell death in human dermal lymphatic endothelial cells (HDLECs), which was potentiated by VEGF-C. The cell death induced by VEGF-C and H2O2 in HDLECs was accompanied by increased reactive oxygen species (ROS) levels and a loss of mitochondrial membrane potential. Antioxidant pre-treatment rescued HDLECs from VEGF-C-induced cell death and decreased ROS under oxidative stress. As expected, VEGF-C increased the number of viable and proliferating HDLECs. However, upon H2O2 treatment, VEGF-C failed to increase either viable or proliferating cells. Since oxidative stress leads to DNA damage, we also determined whether VEGF-C treatment induces DNA damage in HDLECs undergoing oxidative stress. Indeed, DNA damage, detected in the form of gamma H2AX (γH2AX), was increased by VEGF-C under oxidative stress. The potentiation of oxidative stress damage induced by VEFG-C in HDLECs was associated with p53 activation. Finally, the inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) activation blocked VEGF-C-induced cell death following H2O2 treatment. These results indicate that VEGF-C further sensitizes lymphatic endothelial cells to oxidative stress by increasing ROS and DNA damage, potentially compromising lymphangiogenesis.


Subject(s)
Apoptosis , DNA Damage , Endothelial Cells , Hydrogen Peroxide , Lymphedema , Mitochondria , Oxidative Stress , Vascular Endothelial Growth Factor C , Vascular Endothelial Growth Factor C/metabolism , Oxidative Stress/drug effects , Animals , Humans , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Lymphedema/metabolism , Lymphedema/pathology , Lymphedema/etiology , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Apoptosis/drug effects , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/metabolism , Lymphangiogenesis/drug effects , Female
5.
Dev Dyn ; 252(2): 227-238, 2023 02.
Article in English | MEDLINE | ID: mdl-35137473

ABSTRACT

BACKGROUND: Initial lymphatic vessels do not have a continuous basement membrane. Therefore, the ability of lymphatic endothelial cells (LECs) to produce extracellular matrix (ECM) has received little attention. Untreated lymphedema is a chronic disease that progresses to massive fibrosclerosis in advanced stages. Expansion of the intercellular space and fibrosclerosis cause hypoxia, which also affects the LECs. RESULTS: We studied the expression of genes in human LECs in vitro by RNA sequencing, analyzed the effects of hypoxia (1% O2 ) vs. normoxia (21% O2 ), and focused on ECM genes. LECs express fibrillin-1 and many typical components of a basement membrane such as type IV, VIII, and XVIII collagen, laminin ß1, ß2, and α4, perlecan, and fibronectin. Under hypoxia, we found significant upregulation of expression of genes controlling hydroxylation of procollagen (PLOD2, P4HA1), and also cross-linking, bundling, and stabilization of collagen fibrils and fibers. Also striking was the highly significant downregulation of elastin expression, whereas fibulin-5, which controls the assembly of tropoelastin monomers, was upregulated under hypoxia. In the dermis from genital lymphedema, we observed significant PLOD2 expression in initial lymphatics. CONCLUSIONS: Overall, hypoxia results in the picture of a dysregulated ECM production of LECs, which might be partly responsible for the progression of fibrosclerosis in lymphedema.


Subject(s)
Endothelial Cells , Lymphedema , Humans , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Laminin/metabolism , Hypoxia/metabolism , Lymphedema/metabolism
6.
J Hepatol ; 79(4): 945-954, 2023 10.
Article in English | MEDLINE | ID: mdl-37328071

ABSTRACT

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Subject(s)
Cholestasis , Intracellular Signaling Peptides and Proteins , Lymphedema , Humans , Infant, Newborn , 5' Untranslated Regions/genetics , Carrier Proteins/genetics , Cholestasis/genetics , HEK293 Cells , Intracellular Signaling Peptides and Proteins/genetics , Lymphedema/diagnosis , Lymphedema/genetics , Lymphedema/metabolism , Myosins/genetics , Myosins/metabolism
7.
BMC Immunol ; 24(1): 42, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940849

ABSTRACT

BACKGROUND: Lymphedema is an intractable disease that can be caused by injury to lymphatic vessels, such as by surgical treatments for cancer. It can lead to impaired joint mobility in the extremities and reduced quality of life. Chronic inflammation due to infiltration of various immune cells in an area of lymphedema is thought to lead to local fibrosis, but the molecular pathogenesis of lymphedema remains unclear. Development of effective therapies requires elucidation of the immunological mechanisms involved in the progression of lymphedema. The complement system is part of the innate immune system which has a central role in the elimination of invading microbes and acts as a scavenger of altered host cells, such as apoptotic and necrotic cells and cellular debris. Complement-targeted therapies have recently been clinically applied to various diseases caused by complement overactivation. In this context, we aimed to determine whether complement activation is involved in the development of lymphedema. RESULTS: Our mouse tail lymphedema models showed increased expression of C3, and that the classical or lectin pathway was locally activated. Complement activation was suggested to be involved in the progression of lymphedema. In comparison of the C3 knockout (KO) mouse lymphedema model and wild-type mice, there was no difference in the degree of edema at three weeks postoperatively, but the C3 KO mice had a significant increase of TUNEL+ necrotic cells and CD4+ T cells. Infiltration of macrophages and granulocytes was not significantly elevated in C3 KO or C5 KO mice compared with in wild-type mice. Impaired opsonization and decreased migration of macrophages and granulocytes due to C3 deficiency should therefore induce the accumulation of dead cells and may lead to increased infiltration of CD4+ T cells. CONCLUSIONS: Vigilance for exacerbation of lymphedema is necessary when surgical treatments have the potential to injure lymphatic vessels in patients undergoing complement-targeted therapies or with complement deficiency. Future studies should aim to elucidate the molecular mechanism of CD4+ T cell infiltration by accumulated dead cells.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Animals , Mice , Quality of Life , Lymphedema/etiology , Lymphedema/metabolism , Lymphedema/pathology , CD4-Positive T-Lymphocytes , Inflammation , Mice, Knockout , Mice, Inbred C57BL
8.
Mol Biol Rep ; 50(10): 7981-7993, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37540456

ABSTRACT

BACKGROUND: Accumulating evidence suggests that prostaglandin E2, an arachidonic acid (AA) metabolite, enhances lymphangiogenesis in response to inflammation. However, thromboxane A2 (TXA2), another AA metabolite, is not well known. Thus, this study aimed to determine the role of thromboxane prostanoid (TP) signaling in lymphangiogenesis in secondary lymphedema. METHODS AND RESULTS: Lymphedema was induced by the ablation of lymphatic vessels in mouse tails. Compared with wild-type mice, tail lymphedema in Tp-deficient mice was enhanced, which was associated with suppressed lymphangiogenesis as indicated by decreased lymphatic vessel area and pro-lymphangiogenesis-stimulating factors. Numerous macrophages were found in the tail tissues of Tp-deficient mice. Furthermore, the deletion of TP in macrophages increased tail edema and decreased lymphangiogenesis and pro-lymphangiogenic cytokines, which was accompanied by increased numbers of macrophages and gene expression related to a pro-inflammatory macrophage phenotype in tail tissues. In vivo microscopic studies revealed fluorescent dye leakage in the lymphatic vessels in the wounded tissues. CONCLUSIONS: The results suggest that TP signaling in macrophages promotes lymphangiogenesis and prevents tail lymphedema. TP signaling may be a therapeutic target for improving lymphedema-related symptoms by enhancing lymphangiogenesis.


Subject(s)
Lymphatic Vessels , Lymphedema , Mice , Animals , Lymphangiogenesis , Prostaglandins/metabolism , Thromboxanes/metabolism , Lymphatic Vessels/metabolism , Macrophages/metabolism , Lymphedema/genetics , Lymphedema/metabolism
9.
Nucleic Acids Res ; 49(19): 10931-10955, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34570228

ABSTRACT

Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.


Subject(s)
Glomerulonephritis/genetics , Hypotrichosis/genetics , Lymphedema/genetics , SOXF Transcription Factors/genetics , Telangiectasis/genetics , Transcription, Genetic , Animals , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Gene Expression Regulation , Gene Regulatory Networks , Genes, Reporter , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Hypotrichosis/metabolism , Hypotrichosis/pathology , Luciferases/genetics , Luciferases/metabolism , Lymphedema/metabolism , Lymphedema/pathology , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Mutation , SOXF Transcription Factors/metabolism , Single Molecule Imaging , Telangiectasis/metabolism , Telangiectasis/pathology
10.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33864419

ABSTRACT

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Subject(s)
GATA2 Transcription Factor/metabolism , Lymph Node Excision/adverse effects , Lymphatic Vessels/metabolism , Lymphedema/metabolism , Postoperative Complications/metabolism , Animals , GATA2 Transcription Factor/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Heterozygote , Lymphatic Vessels/physiology , Lymphedema/etiology , Mice , Postoperative Complications/etiology , Regeneration
11.
Cell Mol Life Sci ; 78(16): 5903-5923, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34240226

ABSTRACT

Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.


Subject(s)
Lymphatic Vessels/metabolism , Signal Transduction/physiology , Animals , Cardiovascular System/metabolism , Humans , Lymphedema/metabolism , Stress, Mechanical
12.
Annu Rev Physiol ; 80: 49-70, 2018 02 10.
Article in English | MEDLINE | ID: mdl-29029593

ABSTRACT

The lymphatic system is essential for the maintenance of tissue fluid homeostasis, gastrointestinal lipid absorption, and immune trafficking. Whereas lymphatic regeneration occurs physiologically in wound healing and tissue repair, pathological lymphangiogenesis has been implicated in a number of chronic diseases such as lymphedema, atherosclerosis, and cancer. Insight into the regulatory mechanisms of lymphangiogenesis and the manner in which uncontrolled inflammation promotes lymphatic dysfunction is urgently needed to guide the development of novel therapeutics: These would be designed to reverse lymphatic dysfunction, either primary or acquired. Recent investigation has demonstrated the mechanistic role of leukotriene B4 (LTB4) in the molecular pathogenesis of lymphedema. LTB4, a product of the innate immune response, is a constituent of the eicosanoid inflammatory mediator family of molecules that promote both physiological and pathological inflammation. Here we provide an overview of lymphatic development, the pathophysiology of lymphedema, and the role of leukotrienes in lymphedema pathogenesis.


Subject(s)
Leukotrienes/metabolism , Lymphatic System/physiopathology , Lymphedema/physiopathology , Animals , Humans , Inflammation/pathology , Lymphatic System/metabolism , Lymphatic System/pathology , Lymphedema/metabolism , Lymphedema/pathology
13.
J Cutan Pathol ; 48(4): 578-586, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33128474

ABSTRACT

BACKGROUND: Secondary angiosarcoma (AS) most commonly follows breast cancer and includes postirradiation AS (PRAS) and lymphedema-associated AS. The frequent amplification of MYC (8q24.21) in secondary AS and the rising incidence of PRAS and atypical vascular lesions (AVLs) have prompted interest in the diagnostic and prognostic utility of MYC in AS. METHODS: Retrospective series with ≥2 cases of cutaneous AS and describing the use of fluorescence in situ hybridization (FISH) for MYC amplification or immunohistochemistry (IHC) for MYC overexpression were included. RESULTS: Sixteen studies met inclusion criteria. Overall, 93% of cases evaluated by FISH and IHC were concordant. The sensitivity of FISH in primary AS was only 6.8%, and protein overexpression occurred without amplification in sun-damaged skin. FISH and IHC were over 78% sensitive in secondary AS but negative in over 98% of AVLs. MYC amplification and FLT4 coamplification were associated with shorter overall survival in secondary AS. CONCLUSION: FISH for MYC amplification and IHC for MYC overexpression are useful in distinguishing PRAS from AVLs and may also have prognostic value in secondary AS. In contrast, these methods have little diagnostic or prognostic value in primary AS and should not be used to distinguish primary AS from benign vascular neoplasms.


Subject(s)
Gene Amplification/genetics , Hemangiosarcoma/genetics , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , Proto-Oncogene Proteins c-myc/genetics , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Female , Hemangiosarcoma/diagnosis , Hemangiosarcoma/metabolism , Hemangiosarcoma/mortality , Hemangiosarcoma/pathology , Humans , Lymphedema/complications , Lymphedema/metabolism , Lymphedema/pathology , Neoplasms, Radiation-Induced/diagnosis , Neoplasms, Radiation-Induced/metabolism , Neoplasms, Radiation-Induced/pathology , Prognosis , Retrospective Studies , Sensitivity and Specificity , Skin Neoplasms/genetics , Skin Neoplasms/pathology
14.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072103

ABSTRACT

This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.


Subject(s)
Biomarkers , Connexins/genetics , Connexins/metabolism , Disease Susceptibility , Homeostasis , Lymphatic System/metabolism , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Gene Expression , Humans , Immunohistochemistry , Lymphedema/etiology , Lymphedema/metabolism , Lymphedema/pathology , Mutation , Organogenesis/genetics
15.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923272

ABSTRACT

The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.


Subject(s)
Disease Models, Animal , Leucine/analogs & derivatives , Leukocytes/immunology , Leukotriene B4/antagonists & inhibitors , Lymph Nodes/immunology , Lymphatic Vessels/immunology , Lymphedema/immunology , Animals , Female , Kinetics , Leucine/pharmacology , Leukocytes/drug effects , Leukocytes/metabolism , Leukocytes/pathology , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphedema/drug therapy , Lymphedema/metabolism , Lymphedema/pathology , Male , Mice , Mice, Inbred C57BL , Protease Inhibitors/pharmacology
16.
Cancer Sci ; 111(7): 2620-2634, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32412154

ABSTRACT

Secondary lymphedema often develops after cancer surgery, and over 250 million patients suffer from this complication. A major symptom of secondary lymphedema is swelling with fibrosis, which lowers the patient's quality of life, even if cancer does not recur. Nonetheless, the pathophysiology of secondary lymphedema remains unclear, with therapeutic approaches limited to physical or surgical therapy. There is no effective pharmacological therapy for secondary lymphedema. Notably, the lack of animal models that accurately mimic human secondary lymphedema has hindered pathophysiological investigations of the disease. Here, we developed a novel rat hindlimb model of secondary lymphedema and showed that our rat model mimics human secondary lymphedema from early to late stages in terms of cell proliferation, lymphatic fluid accumulation, and skin fibrosis. Using our animal model, we investigated the disease progression and found that transforming growth factor-beta 1 (TGFB1) was produced by macrophages in the acute phase and by fibroblasts in the chronic phase of the disease. TGFB1 promoted the transition of fibroblasts into myofibroblasts and accelerated collagen synthesis, resulting in fibrosis, which further indicates that myofibroblasts and TGFB1/Smad signaling play key roles in fibrotic diseases. Furthermore, the presence of myofibroblasts in skin samples from lymphedema patients after cancer surgery emphasizes the role of these cells in promoting fibrosis. Suppression of myofibroblast-dependent TGFB1 production may therefore represent an effective pharmacological treatment for inhibiting skin fibrosis in human secondary lymphedema after cancer surgery.


Subject(s)
Lymphedema/etiology , Lymphedema/metabolism , Postoperative Complications , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Biomarkers , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , Humans , Immunohistochemistry , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphedema/diagnostic imaging , Lymphedema/pathology , Macrophages/metabolism , Macrophages/pathology , Rats , Severity of Illness Index , Skin/metabolism , Skin/pathology , Transforming Growth Factor beta1/genetics
17.
Circ Res ; 123(8): 964-985, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30355030

ABSTRACT

RATIONALE: Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE: To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS: We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS: Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.


Subject(s)
Connexins/metabolism , Lymph/metabolism , Lymphatic Vessels/metabolism , Lymphedema/metabolism , Muscle Contraction , Animals , Calcium Signaling , Connexin 43/genetics , Connexin 43/metabolism , Connexins/deficiency , Connexins/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Female , Genetic Predisposition to Disease , Gravitation , Humans , In Vitro Techniques , Lymphatic Vessels/physiopathology , Lymphedema/genetics , Lymphedema/physiopathology , Male , Membrane Potentials , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Optogenetics , Phenotype , Time Factors , Gap Junction alpha-4 Protein
18.
J Surg Res ; 253: 294-303, 2020 09.
Article in English | MEDLINE | ID: mdl-32407981

ABSTRACT

BACKGROUND: Lipedema is a common adipose tissue disorder affecting women, characterized by a symmetric subcutaneous adipose tissue deposition, particularly of the lower extremities. Lipedema is usually underdiagnosed, thus remaining an undertreated disease. Importantly, no histopathologic or molecular hallmarks exist to clearly diagnose the disease, which is often misinterpreted as obesity or lymphedema. MATERIALS AND METHODS: The aim of the present study is to characterize in detail morphologic and molecular alterations in the adipose tissue composition of lipedema patients compared with healthy controls. Detailed histopathologic and molecular characterization was performed using lipid and cytokine quantification as well as gene expression arrays. The analysis was conducted on anatomically matched skin and fat tissue biopsies as well as fasting serum probes obtained from 10 lipedema and 11 gender and body mass index-matched control patients. RESULTS: Histologic evaluation of the adipose tissue showed increased intercellular fibrosis and adipocyte hypertrophy. Serum analysis showed an aberrant lipid metabolism without changes in the circulating adipokines. In an adipogenesis gene array, a distinct gene expression profile associated with macrophages was observed. Histologic assessment of the immune cell infiltrate confirmed the increased presence of macrophages, without changes in the T-cell compartment. CONCLUSIONS: Lipedema presents a distinguishable disease with typical tissue architecture and aberrant lipid metabolism, different to obesity or lymphedema. The differentially expressed genes and immune cell infiltration profile in lipedema patients further support these findings.


Subject(s)
Adipogenesis/genetics , Lipedema/diagnosis , Subcutaneous Fat/pathology , Adipokines/blood , Biomarkers/blood , Biomarkers/metabolism , Biopsy , Case-Control Studies , Cytokines/analysis , Diagnosis, Differential , Female , Fibrosis , Gene Expression Profiling , Healthy Volunteers , Humans , Hypertrophy/blood , Hypertrophy/diagnosis , Hypertrophy/genetics , Hypertrophy/pathology , Lipedema/blood , Lipedema/metabolism , Lipedema/pathology , Lipid Metabolism/genetics , Lipids/analysis , Lymphedema/blood , Lymphedema/diagnosis , Lymphedema/metabolism , Lymphedema/pathology , Macrophages/metabolism , Obesity/blood , Obesity/diagnosis , Obesity/metabolism , Obesity/pathology , Skin/pathology
19.
J Surg Oncol ; 121(1): 100-108, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31240729

ABSTRACT

BACKGROUND AND OBJECTIVES: Previously, we have shown that 9-cis retinoic acid (9-cis RA) stimulates lymphangiogenesis and limits postsurgical lymphedema in animal models when administered via daily intraperitoneal injections. In this study, we investigate whether a single-use depot 9-cis RA drug delivery system (DDS) implanted at the site of lymphatic injury can mitigate the development of lymphedema in a clinically relevant mouse limb model. METHODS: Hind limb lymphedema was induced via surgical lymphadenectomy and irradiation. Animals were divided into two treatment groups: (1) 9-cis RA DDS, (2) placebo DDS. Outcomes measured included paw thickness, lymphatic clearance and density, epidermal thickness, and collagen deposition. RESULTS: Compared with control animals, 9-cis RA-treated animals had significantly less paw swelling from postoperative week 3 (P = .04) until the final timepoint at week 6 (P = .0007). Moreover, 9-cis RA-treated animals had significantly faster lymphatic clearance (P < .05), increased lymphatic density (P = .04), reduced lymphatic vessel size (P = .02), reduced epidermal hyperplasia (P = .04), and reduced collagen staining (P = .10). CONCLUSIONS: Animals receiving 9-cis RA sustained-release implants at the time of surgery had improved lymphatic function and structure, indicating reduced lymphedema progression. Thus, we demonstrate that 9-cis RA contained within a single-use depot DDS has favorable properties in limiting pathologic responses to lymphatic injury and may be an effective strategy against secondary lymphedema.


Subject(s)
Alitretinoin/administration & dosage , Lymph Node Excision/methods , Lymphedema/prevention & control , Animals , Collagen/metabolism , Delayed-Action Preparations , Epidermis/drug effects , Epidermis/pathology , Female , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Hindlimb , Hyperplasia , Lymph Node Excision/adverse effects , Lymphatic System/drug effects , Lymphatic System/metabolism , Lymphedema/metabolism , Male , Mice , Mice, Transgenic , Postoperative Complications/prevention & control
20.
Int J Mol Sci ; 21(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640757

ABSTRACT

The lymphatic vasculature, along with the blood vasculature, is a vascular system in our body that plays important functions in fluid homeostasis, dietary fat uptake, and immune responses. Defects in the lymphatic system are associated with various diseases such as lymphedema, atherosclerosis, fibrosis, obesity, and inflammation. The first step in lymphangiogenesis is determining the cell fate of lymphatic endothelial cells. Several genes involved in this commitment step have been identified using animal models, including genetically modified mice. This review provides an overview of these genes in the mammalian system and related human diseases.


Subject(s)
Endothelial Cells/pathology , Lymphangiogenesis , Lymphatic System/pathology , Lymphedema/pathology , Neovascularization, Pathologic/pathology , Animals , Endothelial Cells/metabolism , Humans , Lymphatic System/metabolism , Lymphedema/metabolism , Mice , Neovascularization, Pathologic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL