Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734632

ABSTRACT

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Subject(s)
Fatty Acids, Unsaturated , Interleukin-1beta , Magnetic Resonance Imaging , Synovial Membrane , Synovitis , Tibial Meniscus Injuries , Tibial Meniscus Injuries/drug therapy , Tibial Meniscus Injuries/metabolism , Synovitis/drug therapy , Synovitis/metabolism , Synovitis/pathology , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Synovial Membrane/pathology , Humans , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/therapeutic use , Male , Interleukin-1beta/metabolism , Animals , Interleukin-6/metabolism , Female , Menisci, Tibial/drug effects , Menisci, Tibial/metabolism , Mice , Disease Models, Animal
2.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804203

ABSTRACT

Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1ß)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1ß-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.


Subject(s)
Cornus/chemistry , Glycosides/pharmacology , Inflammation/drug therapy , Menisci, Tibial/drug effects , Osteoarthritis/drug therapy , Animals , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cyclooxygenase 2/genetics , Dinoprostone/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycosides/chemistry , Humans , Interleukin-1beta/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Menisci, Tibial/pathology , Menisci, Tibial/surgery , Mice , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/surgery , Plant Extracts/chemistry , Plant Extracts/pharmacology , Primary Cell Culture , RAW 264.7 Cells , Signal Transduction/drug effects
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830345

ABSTRACT

Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.


Subject(s)
Chondrocytes/drug effects , Fibroblasts/drug effects , Hypoxia/metabolism , Menisci, Tibial/drug effects , Oxygen/pharmacology , Animals , Animals, Newborn , Biomarkers/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Differentiation/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Endostatins/genetics , Endostatins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Hypoxia/genetics , Menisci, Tibial/cytology , Menisci, Tibial/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Swine , Tissue Culture Techniques
4.
Osteoarthritis Cartilage ; 28(9): 1286-1297, 2020 09.
Article in English | MEDLINE | ID: mdl-32535082

ABSTRACT

OBJECTIVE: To evaluate effects of a common CT contrast agent (iohexol) on the mechanical behaviors of cartilage and meniscus. METHODS: Indentation responses of juvenile bovine cartilage and meniscus were monitored following exposure to undiluted contrast agent (100% CA), 50% CA/water, 50% CA/Phosphate Buffered Saline (PBS) or PBS alone, and during re-equilibration in PBS. The normalized peak force (Fpk¯), effective osmotic strain (εosm), and normalized effective contact modulus (Ec¯) were calculated for every cycle, with time constants determined for both exposure and recovery via mono- or biexponential fits to Fpk¯. RESULTS: All cartilage CA groups exhibited long-term increases in Fpk¯ following exposure, although the hyperosmolal 100% CA and 50% CA/PBS groups showed an initial transient decrease. Meniscus presented opposing trends, with decreasing Fpk¯ for all CA groups. Re-equilibration in PBS for 1hr after exposure to 100% CA produced recovery to baseline Fpk¯ in cartilage but not in meniscus, and extended tests indicated that meniscus required ∼2.5 h to recover halfway. Ec¯ increased with CA exposure time for cartilage but decreased for meniscus, suggesting an increased effective stiffness for cartilage and decreased stiffness for meniscus. Long-term changes to εosm in both tissues were consistent with changes in Ec¯. CONCLUSION: Exposure to iohexol solutions affected joint tissues differentially, with increased cartilage stiffness, likely relating to competing hyperosmotic and hypotonic interactions with tissue fixed charges, and decreased meniscus stiffness, likely dominated by hyperosmolarity. These altered tissue mechanics could allow non-physiological deformation during ambulatory weight-bearing, resulting in an increased risk of tissue or cell damage.


Subject(s)
Biomechanical Phenomena/drug effects , Cartilage, Articular/drug effects , Contrast Media/pharmacology , Iohexol/pharmacology , Menisci, Tibial/drug effects , Animals , Arthrography , Cartilage, Articular/physiopathology , Cattle , Menisci, Tibial/physiopathology , Stress, Mechanical , Tomography, X-Ray Computed , Weight-Bearing
5.
Clin Sci (Lond) ; 134(23): 3159-3174, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33215637

ABSTRACT

Gut microbiota dysbiosis has been studied under the pathological conditions of osteoarthritis (OA). However, the effect of antibiotic-induced gut flora dysbiosis on OA remains incompletely understood at present. Herein, we used a mouse (8 weeks) OA model of destabilization of the medial meniscus (DMM) and gut microbiome dysbiosis induced by antibiotic treatment with ampicillin and neomycin for 8 weeks. The results show that antibiotic-induced intestinal microbiota dysbiosis reduced the serum level of lipopolysaccharide (LPS) and the inflammatory response, such as suppression of the levels of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which can lead to decreased matrix metalloprotease-13 (MMP-13) expression and improvement of OA after joint injury. In addition, trabecular thickness (Tb.Th) and osteophyte scores were increased significantly in antibiotic-induced male mice compared with female mice. We further used network correlation analysis to verify the effect of gut microbiota dysbiosis on OA. Therefore, the present study contributes to our understanding of the gut-joint axis in OA and reveals the relationship between the inflammatory response, sex and gut microbiota, which may provide new strategies to prevent the symptoms and long-term sequelae of OA. Conclusion: Our data showed that gut microbiome dysbiosis alleviates the progression of OA.


Subject(s)
Disease Progression , Dysbiosis/microbiology , Gastrointestinal Microbiome , Osteoarthritis/microbiology , Osteoarthritis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , Bone and Bones/drug effects , Bone and Bones/pathology , Calcification, Physiologic/drug effects , Cartilage/drug effects , Cartilage/pathology , Dysbiosis/blood , Dysbiosis/complications , Dysbiosis/drug therapy , Female , Gastrointestinal Microbiome/drug effects , Inflammation/pathology , Male , Matrix Metalloproteinase 13/metabolism , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Mice, Inbred C57BL , Sclerosis/complications , Sclerosis/pathology , Sex Characteristics
6.
J Cell Mol Med ; 23(8): 5369-5379, 2019 08.
Article in English | MEDLINE | ID: mdl-31148341

ABSTRACT

Although Hif-2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif-2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif-2α-induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL-1ß-, IL-6, IL-17- and TNF-α-induced up-regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX-2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif-2α, which directly up-regulates MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif-2α expression and inhibited Hif-2α-induced MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression in articular chondrocytes. IL-1ß induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif-2α expression, was completely blocked by apigenin in a concentration-dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif-2α inhibitors.


Subject(s)
Apigenin/pharmacology , Arthritis, Experimental/drug therapy , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cirsium/chemistry , Osteoarthritis/drug therapy , Animals , Arthritis, Experimental/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Menisci, Tibial/drug effects , Menisci, Tibial/metabolism , Mice , Mice, Inbred C57BL , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects
7.
Int J Mol Sci ; 20(4)2019 Feb 16.
Article in English | MEDLINE | ID: mdl-30781461

ABSTRACT

Meniscal tears are the most common orthopaedic injuries, with chronic lesions comprising up to 56% of cases. In these situations, no benefit with surgical treatment is observed. Thus, the purpose of this study was to investigate the effectiveness and safety of percutaneous intrameniscal platelet rich plasma (PRP) application to complement repair of a chronic meniscal lesion. This single centre, prospective, randomized, double-blind, placebo-controlled study included 72 patients. All subjects underwent meniscal trephination with or without concomitant PRP injection. Meniscal non-union observed in magnetic resonance arthrography or arthroscopy were considered as failures. Patient related outcome measures (PROMs) were assessed. The failure rate was significantly higher in the control group than in the PRP augmented group (70% vs. 48%, P = 0.04). Kaplan-Meyer analysis for arthroscopy-free survival showed significant reduction in the number of performed arthroscopies in the PRP augmented group. A notably higher percentage of patients treated with PRP achieved minimal clinically significant difference in visual analogue scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) symptom scores. Our trial indicates that percutaneous meniscal trephination augmented with PRP results in a significant improvement in the rate of chronic meniscal tear healing and this procedure decreases the necessity for arthroscopy in the future (8% vs. 28%, P = 0.032).


Subject(s)
Knee Injuries/therapy , Osteoarthritis, Knee/therapy , Platelet-Rich Plasma , Tibial Meniscus Injuries/therapy , Administration, Cutaneous , Adult , Aged , Arthroscopy/statistics & numerical data , Disease-Free Survival , Female , Humans , Knee Injuries/blood , Knee Injuries/pathology , Male , Menisci, Tibial/drug effects , Menisci, Tibial/surgery , Middle Aged , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/pathology , Tibial Meniscus Injuries/blood , Tibial Meniscus Injuries/pathology , Treatment Outcome
8.
Int J Mol Sci ; 20(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717200

ABSTRACT

The aim of this PRISMA review was to assess whether the CMI and Actifit scaffolds, when used in clinical practice, improve clinical outcomes and demonstrate the ideal biological and biomechanical properties of scaffolds: being chondroprotective, porous, resorbable, able to mature and promote regeneration of tissue. This was done by only including studies that assessed clinical outcome and used a scale to assess both integrity of the scaffold and its effects on articular cartilage via MRI. A search was performed on PubMed, EMBASE, Scopus and clinicaltrials.gov. 2457 articles were screened, from which eight studies were selected: four used Actifit, three used CMI and one compared the two. All studies reported significant improvement in at least one clinical outcome compared to baseline. Some studies suggested that the scaffolds appeared to show porosity, mature, resorb and/or have possible chondroprotective effects, as assessed by MRI. The evidence for clinical translation is limited by differences in study methodology and small sample sizes, but is promising in terms of improving clinical outcomes in the short to mid-term. Higher level evidence, with MRI and histological evaluation of the scaffold and articular cartilage, is now needed to further determine whether these scaffolds exhibit these useful properties.


Subject(s)
Absorbable Implants , Arthroscopy/instrumentation , Collagen/therapeutic use , Polyesters/therapeutic use , Polyurethanes/therapeutic use , Tibial Meniscus Injuries/surgery , Adult , Arthroscopy/methods , Biomechanical Phenomena , Collagen/chemistry , Female , Humans , Knee Injuries/pathology , Knee Injuries/surgery , Magnetic Resonance Imaging , Male , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Menisci, Tibial/surgery , Polyesters/chemistry , Polyurethanes/chemistry , Porosity , Research Design , Tibial Meniscus Injuries/pathology , Tissue Scaffolds , Treatment Outcome
9.
J Transl Med ; 16(1): 72, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29554973

ABSTRACT

BACKGROUND: Articular cartilage degeneration plays a key role in the pathogenesis of osteoarthritis (OA). Bushenhuoxue formula (BSHXF) has been widely used in the treatment of OA in clinics. However, the molecular mechanisms responsible for the chondroprotective effect of BSHXF remain to be elucidated. The purpose of this study was to explore the effects of BSHXF on OA mice model. METHODS: In this study, we investigated the effects of BSHXF on destabilization of the medial meniscus (DMM)-induced chondrocyte degradation in OA mice model. At 12 weeks post-surgery, the joints were harvested for tissue analyses, including histology, histomorphometry, TUNEL, OARSI scoring, micro-CT and immunohistochemistry for COL2, TGFBR2, pSMAD2 and MMP13. Additionally, we also evaluated the effects of BSHXF on Mmp13 mRNA and protein expression in chondrogenic ATDC5 cells through real-time PCR and Western blot respectively. Moreover, we investigated the chondroprotective effect of BSHXF on mice with Tgfbr2 conditional knockout (Tgfbr2 Col2ER mice) in chondrocyte, including the relative experiments mentioned above. We transfected Tgfbr2 siRNA in ATDC5 to further evaluate the changes of Mmp13 mRNA and protein expression followed by BSHXF treatment. RESULTS: Amelioration of cartilage degradation and chondrocyte apoptosis were observed in DMM-induced mice, with increases in cartilage area and thickness, proteoglycan matrix, COL2 content and decreases in OARSI score at 12 weeks post surgery. Moreover, the elevated TGFBR2 and pSMAD2, and reduced MMP13 positive cells were also revealed in DMM-induced mice treated with BSHXF. Besides, decreased Mmp13 mRNA and protein expression were observed inchondrogenic ATDC5 cells culture in serum containing BSHXF. As expected, Tgfbr2 Col2ER mice exhibited significant OA-like phenotype. Interestingly, obvious improvement in articular cartilage structure was still observed in Tgfbr2 Col2ER mice after BSHXF treatment via up-regulated pSMAD2 and down-regulated MMP13 expressional levels in articular cartilage. CONCLUSIONS: BSHXF could inhibit cartilage degradation through TGF-ß/MMP13 signaling, and be considered a good option for the treatment of OA.


Subject(s)
Cartilage, Articular/pathology , Drugs, Chinese Herbal/therapeutic use , Matrix Metalloproteinase 13/metabolism , Osteoarthritis/drug therapy , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Disease Progression , Drugs, Chinese Herbal/pharmacology , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Mice, Inbred C57BL , Osteoarthritis/pathology , Phenotype , Phosphorylation/drug effects , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type II/metabolism , Smad2 Protein/metabolism , Up-Regulation/drug effects
10.
Osteoarthritis Cartilage ; 25(5): 750-758, 2017 05.
Article in English | MEDLINE | ID: mdl-27986622

ABSTRACT

OBJECTIVE: In rodent osteoarthritis (OA) models, behavioral changes are often subtle and require highly sensitive methods to detect these changes. Gait analysis is one assay that may provide sensitive, quantitative measurement of these behavioral changes. To increase detection sensitivity of gait assessments relative to spatiotemporal gait collection alone, we combined our spatiotemporal and dynamic gait collection systems. Using this combined system, gait was assessed in the rat medial meniscus transection (MMT) model and monoiodoacetate (MIA) injection model of knee OA. DESIGN: 36 male Lewis rats were separated into MMT (n = 8), medial collateral ligament transection (MCLT) (n = 8), skin incision (n = 4), MIA injection (n = 8), and saline injection (n = 8) groups. After initiation of OA, gait data were collected weekly in each group out to 4 weeks. RESULTS: The MMT and MIA injection models produced unique pathologic gait profiles, with MMT animals developing a shuffling gait and MIA injection animals exhibiting antalgic gait. Spatiotemporal changes were also observed in the MMT model at week 1 (P < 0.01), but were not observed in the MIA injection model until week 3 (P < 0.01). Dynamic gait changes were observed in both models as early as 1 week post-surgery (P < 0.01). CONCLUSION: Combined analysis of spatiotemporal and dynamic gait data increased detection sensitivity for gait modification in two rat OA models. Analyzing the combined gait data provided a robust characterization of the pathologic gait produced by each model. Furthermore, this characterization revealed different patterns of gait compensations in two common rat models of knee OA.


Subject(s)
Gait/physiology , Iodoacetic Acid/pharmacology , Menisci, Tibial/pathology , Osteoarthritis, Knee/pathology , Adaptation, Physiological , Animals , Behavior, Animal , Biopsy, Needle , Disease Models, Animal , Immunohistochemistry , Injections, Intra-Articular , Male , Menisci, Tibial/drug effects , Menisci, Tibial/surgery , Osteoarthritis, Knee/drug therapy , Physical Conditioning, Animal , Random Allocation , Rats , Rats, Inbred Lew , Spatio-Temporal Analysis
11.
Osteoarthritis Cartilage ; 25(4): 554-560, 2017 04.
Article in English | MEDLINE | ID: mdl-27851984

ABSTRACT

OBJECTIVE: Investigation of osteoarthritis (OA) risk alleles suggests that reduced levels of growth and differentiation factor-5 (GDF5) may be a precipitating factor in OA. We hypothesized that intra-articular recombinant human GDF5 (rhGDF5) supplementation to the OA joint may alter disease progression. METHODS: A rat medial meniscus transection (MMT) joint instability OA model was used. Animals received either one intra-articular injection, or two or three bi-weekly intra-articular injections of either 30 µg or 100 µg of rhGDF5 beginning on day 21 post surgery after structural pathology had been established. Nine weeks after MMT surgery, joints were processed for histological analysis following staining with toluidine blue. Control groups received intra-articular vehicle injections, comprising a glycine-buffered trehalose solution. OA changes in the joint were evaluated using histopathological end points that were collected by a pathologist who was blinded to treatment. RESULTS: Intra-articular rhGDF5 supplementation reduced cartilage lesions on the medial tibial plateau in a dose-dependent manner when administered therapeutically to intercept OA disease progression. A single 100 µg rhGDF5 injection on day 21 slowed disease progression at day 63. A similar effect was achieved with two bi-weekly injections of 30 µg. Two bi-weekly injections of 100 µg or three bi-weekly injections of 30 µg stopped progression of cartilage lesions. Importantly, three biweekly injections of 100 µg rhGDF5 stimulated significant cartilage repair. CONCLUSIONS: Intra-articular rhGDF5 supplementation can prevent and even reverse OA disease progression in the rat MMT OA model. Collectively, these results support rhGDF5 supplementation as an intra-articular disease modifying OA therapy.


Subject(s)
Cartilage, Articular/drug effects , Growth Differentiation Factor 5/pharmacology , Knee Joint/drug effects , Menisci, Tibial/drug effects , Animals , Cartilage, Articular/pathology , Disease Models, Animal , Disease Progression , Humans , Injections, Intra-Articular , Knee Joint/pathology , Male , Menisci, Tibial/pathology , Menisci, Tibial/surgery , Osteoarthritis, Knee , Rats , Rats, Inbred Lew , Recombinant Proteins/pharmacology , Tibial Meniscus Injuries
12.
Osteoarthritis Cartilage ; 25(6): 914-925, 2017 06.
Article in English | MEDLINE | ID: mdl-27856294

ABSTRACT

OBJECTIVE: We previously found in our embryonic studies that proper regulation of the chemokine CCL12 through its sole receptor CCR2, is critical for joint and growth plate development. In the present study, we examined the role of CCR2 in injury-induced-osteoarthritis (OA). METHOD: We used a murine model of injury-induced-OA (destabilization of medial meniscus, DMM), and systemically blocked CCR2 using a specific antagonist (RS504393) at different times during disease progression. We examined joint degeneration by assessing cartilage (cartilage loss, chondrocyte hypertrophy, MMP-13 expression) and bone lesions (bone sclerosis, osteophytes formation) with or without the CCR2 antagonist. We also performed pain behavioral studies by assessing the weight distribution between the normal and arthritic hind paws using the IITS incapacitance meter. RESULTS: Testing early vs delayed administration of the CCR2 antagonist demonstrated differential effects on joint damage. We found that OA changes in articular cartilage and bone were ameliorated by pharmacological CCR2 blockade, if given early in OA development: specifically, pharmacological targeting of CCR2 during the first 4 weeks (wks) following injury, reduced OA cartilage and bone damage, with less effectiveness with later treatments. Importantly, our pain-related behavioral studies showed that blockade of CCR2 signaling during early, 1-4 wks post-surgery or moderate, 4-8 wks post-surgery, OA was sufficient to decrease pain measures, with sustained improvement at later stages, after treatment was stopped. CONCLUSIONS: Our data highlight the potential efficacy of antagonizing CCR2 at early stages to slow the progression of post-injury OA and, in addition, improve pain symptoms.


Subject(s)
Benzoxazines/pharmacology , Bone and Bones/drug effects , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Menisci, Tibial/drug effects , Osteoarthritis/pathology , Receptors, CCR2/antagonists & inhibitors , Spiro Compounds/pharmacology , Animals , Bone and Bones/pathology , Disease Models, Animal , Disease Progression , Hypertrophy , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/metabolism , Menisci, Tibial/surgery , Mice , Osteoarthritis/metabolism , Osteophyte , Receptors, CCR2/physiology , Sclerosis , Tibial Meniscus Injuries
13.
BMC Musculoskelet Disord ; 18(1): 197, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28511649

ABSTRACT

BACKGROUND: Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. METHODS: Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. RESULTS: Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). CONCLUSION: IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.


Subject(s)
Interleukin-10/therapeutic use , Joint Diseases/chemically induced , Joint Diseases/metabolism , Knee Joint/metabolism , Menisci, Tibial/metabolism , Tumor Necrosis Factor-alpha/toxicity , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cattle , Cell Death/drug effects , Cell Death/physiology , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Interleukin-10/pharmacology , Joint Diseases/drug therapy , Knee Joint/drug effects , Knee Joint/pathology , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Organ Culture Techniques/methods
14.
J Cell Physiol ; 231(4): 944-53, 2016 04.
Article in English | MEDLINE | ID: mdl-26405834

ABSTRACT

Apoptosis signal-regulated kinase 1 (ASK1) has been shown to affect a wide range of cellular processes including stress-related responses, cytokine and growth factor signaling, cell cycle and cell death. Recently, we reported that lack of ASK1 slowed chondrocyte hypertrophy, terminal differentiation and apoptosis resulting in an increase in trabecular bone formation. Herein, we investigated the role of ASK1 in the pathogenesis of osteoarthritis (OA). Immunohistochemistry performed on articular cartilage samples from patients with OA showed ASK1 expression increased with OA severity. In vitro analysis of chondrocyte hypertrophy, maturation and ASK1 signaling in embryonic fibroblasts from ASK1 knockout (KO) and wild type (WT) mice was examined. Western analysis demonstrated an increase in ASK1 signaling commensurate with chondrogenic maturation during differentiation or in response to stress by the cytokines, tumor necrosis factor alpha or interleukin 1 beta in WT, but not in ASK1 KO embryonic fibroblasts. Surgically induced moderate or severe OA or OA due to natural aging in WT and ASK1 KO mice was assessed by microCT of subchondral bone, immunohistochemistry, histology, and OARSI scoring. Immunohistochemistry, microCT and OARSI scoring all indicated that the lack of ASK1 protected against OA joint degeneration, both in surgically induced OA and in aging mice. We propose that the ASK1 MAP kinase signaling cascade is an important regulator of chondrocyte terminal differentiation and inhibitors of this pathway could be useful for slowing chondrocyte maturation and cell death observed with OA progression. J. Cell. Physiol. 231: 944-953, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Disease Progression , MAP Kinase Kinase Kinase 5/metabolism , Osteoarthritis/enzymology , Stress, Physiological , Aged , Aged, 80 and over , Aging/pathology , Animals , Biomarkers/metabolism , Cartilage/drug effects , Cartilage/injuries , Cartilage/pathology , Cell Death/drug effects , Cell Differentiation/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Cytokines/pharmacology , Enzyme Activation/drug effects , Female , Humans , Hypertrophy , MAP Kinase Signaling System/drug effects , Menisci, Tibial/drug effects , Menisci, Tibial/surgery , Mice, Knockout , Middle Aged , Osteoarthritis/pathology , Stress, Physiological/drug effects
15.
Exp Mol Pathol ; 101(2): 214-220, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27615609

ABSTRACT

We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.


Subject(s)
Biglycan/metabolism , Interleukin-1alpha/pharmacology , Menisci, Tibial/metabolism , Proteolysis/drug effects , Amino Acid Sequence , Animals , Cartilage, Articular/metabolism , Collagen Type IX/metabolism , Collagen Type X/metabolism , Culture Media, Conditioned/pharmacology , Guanidine , Humans , Immunoblotting , Menisci, Tibial/drug effects , Models, Animal , Sheep
16.
BMC Musculoskelet Disord ; 17: 188, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27118194

ABSTRACT

BACKGROUND: Cross-linked hyaluronan--also called Hylan G-F 20--is a medical device developed to treat osteoarthritis of the knee. However, it is still controversial whether Hylan G-F 20 has a cartilage protective effect in trauma-induced osteoarthritis. We investigated whether Hylan G-F 20 delayed osteoarthritis progression in a partial meniscectomized rat model. METHODS: Lewis rats were used for the experiments. The anterior medial meniscus was resected at the level of the medial collateral ligament in both knees. From 1 week after the surgery, 50 µl of Hylan G-F 20 was injected weekly into the left knee and phosphate buffered saline was injected into the right knee. Cartilage was evaluated for macroscopic findings, histology with safranin-o, and expression of type II collagen at 2, 4, and 8 weeks. Synovitis was also evaluated, and immunohistochemical analysis was performed for ED1. RESULTS: Macroscopic findings demonstrated that India ink positive area, representing fibrillated cartilage, was significantly smaller in the Hylan G-F 20 group than in the control group at 2, 4, and 8 weeks (n = 5). There were no significant differences in osteophyte score between the Hylan G-F 20 group and the control group at 2, 4, and 8 weeks. Histologically, the cartilage in the medial tibial plateau was destroyed at 8 weeks in the control group, while type II collagen expression was still observed at 8 weeks in the Hylan G-F 20 group. OARSI score for cartilage histology was significantly lower in the Hylan G-F 20 group than in the control group at 4 and 8 weeks (n = 5). There were no significant differences in synovial cell number or modified synovitis score between the Hylan G-F 20 group and the control group at 2, 4, and 8 weeks (n = 5). In the Hylan G-F 20 group, foreign bodies surrounded by ED1 positive macrophages were observed in the synovium. CONCLUSION: Weekly injections of Hylan G-F 20 starting 1 week after surgery delayed cartilage degeneration after meniscectomy in a rat model. Synovitis induced by meniscectomy was not alleviated by Hylan G-F 20. Insoluble gels were observed in the synovium after the Hylan G-F 20 injection.


Subject(s)
Biocompatible Materials/administration & dosage , Hyaluronic Acid/analogs & derivatives , Menisci, Tibial/surgery , Osteoarthritis, Knee/prevention & control , Osteoarthritis, Knee/surgery , Animals , Cartilage Diseases/pathology , Cartilage Diseases/prevention & control , Cartilage Diseases/surgery , Drug Administration Schedule , Hyaluronic Acid/administration & dosage , Knee Joint/drug effects , Knee Joint/pathology , Knee Joint/surgery , Male , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Osteoarthritis, Knee/pathology , Rats , Rats, Inbred Lew
17.
J Orthop Sci ; 21(4): 524-529, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27113646

ABSTRACT

BACKGROUND: Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. However, the crosstalk between ROCK inhibition, SOX9, and other transcription modulators on COL2A1 upregulation remains unclear in meniscus cells. The aim of this study was to investigate the role of SOX9-related transcriptional complex on COL2A1 expression under the inhibition of ROCK in human meniscus cells. METHODS: Human inner and outer meniscus cells were prepared from macroscopically intact lateral menisci. Cells were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y27632). Gene expression, collagen synthesis, and nuclear translocation of SOX9 and Smad2/3 were analyzed. RESULTS: Treatment of ROCKi increased the ratio of type I/II collagen double positive cells derived from the inner meniscus. In real-time PCR analyses, expression of SOX9 and COL2A1 genes was stimulated by ROCKi treatment in inner meniscus cells. ROCKi treatment also induced nuclear translocation of SOX9 and phosphorylated Smad2/3 in immunohistological analyses. Complex formation between SOX9 and Smad3 was increased by ROCKi treatment in inner meniscus cells. Chromatin immunoprecipitation analyses revealed that association between SOX9/Smad3 transcriptional complex with the COL2A1 enhancer region was increased by ROCKi treatment. CONCLUSIONS: This study demonstrated that ROCK inhibition stimulated SOX9/Smad3-dependent COL2A1 expression through the immediate nuclear translocation of Smad3 in inner meniscus cells. Our results suggest that ROCK inhibition can stimulates type II collagen synthesis through the cooperative activation of Smad3 in inner meniscus cells. ROCKi treatment may be useful to promote the fibrochondrocytic healing of the injured inner meniscus.


Subject(s)
Amides/pharmacology , Collagen Type II/metabolism , Enzyme Inhibitors/pharmacology , Menisci, Tibial/drug effects , Pyridines/pharmacology , SOX9 Transcription Factor/metabolism , Smad3 Protein/metabolism , Cell Culture Techniques , Humans , Menisci, Tibial/metabolism , Menisci, Tibial/pathology , rho GTP-Binding Proteins/antagonists & inhibitors
18.
Apoptosis ; 20(9): 1176-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26108728

ABSTRACT

Intra-articular injection of glucocorticoids (GCs) has been widely used in the management of osteoarthritis and rheumatoid arthritis. Nevertheless, several studies showed that GCs had toxic effects on chondrocytes as well as synovial cells. Previously we reported the protective role of autophagy in the degeneration of meniscal tissues. However, the effects of GCs on autophagy in the meniscal cells have not been fully elucidated. To investigate whether GCs can regulate autophagy in human meniscal cells, the meniscal cells were cultured in vitro and exposed in the presence of dexamethasone. The levels of apoptosis and autophagy were investigated via flow cytometry as well as western blotting analysis. The changes of the aggrecanases were measured using real-time PCR. The role of autophagy in dexamethasone-induced apoptosis was investigated using pharmacological agents and RNA interference technique. An agonist of inositol 1,4,5-trisphosphate receptor (IP3R) was used to investigate the mechanism of dexamethasone-induced autophagy. The results showed that dexamethasone induced autophagy as well as apoptosis in normal human meniscal cells. Using RNA interference technique and pharmacological agents, our results showed that autophagy protected the meniscal cells from dexamethasone-induced apoptosis. Our results also indicated that dexamethasone increased the mRNA levels of aggrecanases. This catabolic effect of dexamethasone was enhanced by 3-MA, the autophagy inhibitor. Furthermore, our results showed that dexamethasone induced autophagy via suppressing the phosphorylation of IP3R. In summary, our results indicated that autophagy protected meniscal cells from GCs-induced apoptosis via inositol trisphosphate receptor signaling.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Dexamethasone/pharmacology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Menisci, Tibial/cytology , Signal Transduction , Adenine/analogs & derivatives , Adenine/pharmacology , Cells, Cultured , Endopeptidases/metabolism , Extracellular Matrix/drug effects , Female , Humans , Inositol 1,4,5-Trisphosphate Receptors/agonists , Menisci, Tibial/drug effects , Menisci, Tibial/metabolism , Osteosarcoma/pathology , Phosphorylation/drug effects , RNA, Messenger/metabolism , Sirolimus/pharmacology
19.
Osteoarthritis Cartilage ; 23(9): 1586-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25937028

ABSTRACT

OBJECTIVE: Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. METHODS: We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). RESULTS: Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. CONCLUSION: These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted.


Subject(s)
Disease Susceptibility , Osteoarthritis/etiology , Receptor, Cannabinoid, CB2/physiology , Aging/physiology , Animals , Cannabinoids/pharmacology , Chondrocytes/metabolism , Menisci, Tibial/drug effects , Mice , Osteoarthritis, Knee/etiology , Proteoglycans/biosynthesis , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/deficiency , X-Ray Microtomography
20.
Osteoarthritis Cartilage ; 23(9): 1551-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25917638

ABSTRACT

OBJECTIVE: This study compared the effects on cartilage and meniscus matrix catabolism and biosynthesis of several adipokines implicated in osteoarthritis (OA). DESIGN: Bovine cartilage and meniscus explants were cultured for 1 or 9 days in serum-free medium alone or with 0.02, 0.2, or 2 µg/ml of leptin, visfatin, adiponectin, or resistin. Media were supplemented with (3)H-proline or (35)S-sodium sulfate to evaluate protein and sulfated glycosaminoglycan (sGAG) accumulation on the last day of culture. Explants were assayed for radiolabel, sGAG, and DNA contents. Cultured media were assayed for sGAG, nitrite and lactate dehydrogenase. RESULTS: Cartilage tissue was minimally affected by adipokines, with only the highest resistin dose increasing sGAG release and nitrite production compared to controls. In sharp contrast, meniscus tissue was responsive to several adipokines, with elevated sGAG and nitrite release following treatment with resistin, leptin, or visfatin. Cartilage sGAG content was unaltered by adipokine treatment whereas meniscal sGAG content significantly decreased with resistin dosage. Protein ((3)H) incorporation was unaffected by adipokine treatment in both tissues. sGAG ((35)S) incorporation did not significantly vary with adipokine treatment in cartilage but was inhibited by treatment with leptin, visfatin, and resistin in meniscus. CONCLUSION: Our results indicate that meniscal tissue is more susceptible to adipokine-stimulated catabolism than is cartilage. Resistin had the strongest effect of the adipokines tested, inducing sGAG release in both tissues and depleting sGAG content in meniscus. These results suggest that increased adipokine levels due to obesity or joint injury may alter the mechanical integrity of the knee joint through biological pathways.


Subject(s)
Adipokines/pharmacology , Cartilage, Articular/drug effects , Menisci, Tibial/drug effects , Adipokines/biosynthesis , Animals , Cartilage, Articular/metabolism , Cattle , DNA/analysis , Glycosaminoglycans/biosynthesis , In Vitro Techniques , Leptin/pharmacology , Menisci, Tibial/metabolism , Protein Biosynthesis , Proteins/metabolism , Resistin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL