ABSTRACT
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolismABSTRACT
People with cystic fibrosis (CF) are commonly infected with difficult to treat organisms, including non-tuberculous mycobacteria. Bacteriophage are viruses that lyse specific bacteria. Nick and colleagues describe the first successful treatment of a Mycobacterium abscessus lung infection with bacteriophage in an immune competent individual. This report provides important information regarding the efficacy of phage therapy and timeline of treatment response.
Subject(s)
Bacteriophages , Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Phage Therapy , Pneumonia , Cystic Fibrosis/therapy , Humans , Mycobacterium Infections, Nontuberculous/therapyABSTRACT
Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.
Subject(s)
Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Adult , Aged , Animals , Female , Fibrosis/physiopathology , Humans , Inflammation/pathology , Lung/metabolism , Male , Metaplasia/physiopathology , Mice , Middle Aged , Neutrophils/immunology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Single-Cell Analysis/methods , Stem Cells/metabolismABSTRACT
Lung dendritic cells (DCs) bridge innate and adaptive immunity, and depending on context, they also induce a Th1, Th2, or Th17 response to optimally clear infectious threats. Conversely, lung DCs can also mount maladaptive Th2 immune responses to harmless allergens and, in this way, contribute to immunopathology. It is now clear that the various aspects of DC biology can be understood only if we take into account the functional specializations of different DC subsets that are present in the lung in homeostasis or are attracted to the lung as part of the inflammatory response to inhaled noxious stimuli. Lung DCs are heavily influenced by the nearby epithelial cells, and a model is emerging whereby direct communication between DCs and epithelial cells determines the outcome of the pulmonary immune response. Here, we have approached DC biology from the perspective of viral infection and allergy to illustrate these emerging concepts.
Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Influenza, Human/immunology , Lung/immunology , Adaptive Immunity , Allergens/immunology , Animals , Asthma/prevention & control , Dendritic Cells/metabolism , Humans , Lung/pathology , Lung/virology , Mice , Pneumonia/immunology , Pneumonia/pathologyABSTRACT
Macrophages have long been considered as particularly plastic cells. However, recent work combining fate mapping, single-cell transcriptomics and epigenetics has undermined the macrophage plasticity dogma. Here, we discuss recent studies that have carefully dissected the response of individual macrophage subsets to pulmonary insults and call for an adjustment of the macrophage plasticity concept. We hypothesize that prolonged tissue residency shuts down much of the plasticity of macrophages and propose that the restricted plasticity of resident macrophages has been favored by evolution to safeguard tissue homeostasis. Recruited monocytes are more plastic and their differentiation into resident macrophages during inflammation can result in a dual imprinting from both the ongoing inflammation and the macrophage niche. This results in inflammation-imprinted resident macrophages, and we speculate that rewired niche circuits could maintain this inflammatory state. We believe that this revisited plasticity model offers opportunities to reset the macrophage pool after a severe inflammatory episode.
Subject(s)
Cell Plasticity , Lung/immunology , Macrophages, Alveolar/immunology , Pneumonia/immunology , Animals , Cellular Microenvironment , Epigenesis, Genetic , Humans , Inflammation Mediators/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Phenotype , Pneumonia/genetics , Pneumonia/metabolism , Signal TransductionABSTRACT
The constituents of the gut microbiome are determined by the local habitat, which itself is shaped by immunological pressures, such as mucosal IgA. Using a mouse model of restricted antibody repertoire, we identified a role for antibody-microbe interactions in shaping a community of bacteria with an enhanced capacity to metabolize L-tyrosine. This model led to increased concentrations of p-cresol sulfate (PCS), which protected the host against allergic airway inflammation. PCS selectively reduced CCL20 production by airway epithelial cells due to an uncoupling of epidermal growth factor receptor (EGFR) and Toll-like receptor 4 (TLR4) signaling. Together, these data reveal a gut microbe-derived metabolite pathway that acts distally on the airway epithelium to reduce allergic airway responses, such as those underpinning asthma.
Subject(s)
Antibodies/metabolism , Bacteria/metabolism , Cresols/metabolism , Gastrointestinal Microbiome , Intestines/microbiology , Lung/metabolism , Pneumonia/prevention & control , Respiratory Hypersensitivity/prevention & control , Sulfuric Acid Esters/metabolism , Tyrosine/metabolism , Administration, Oral , Allergens , Animals , Antibodies/immunology , Antibody Diversity , Bacteria/immunology , Cells, Cultured , Chemokine CCL20/metabolism , Coculture Techniques , Cresols/administration & dosage , Disease Models, Animal , ErbB Receptors/metabolism , Female , Host-Pathogen Interactions , Injections, Intravenous , Lung/immunology , Lung/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/microbiology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/microbiology , Signal Transduction , Sulfuric Acid Esters/administration & dosage , Toll-Like Receptor 4/metabolism , Tyrosine/administration & dosageABSTRACT
Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.
Subject(s)
Dinoprostone , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Lung , Mast Cells , Mice, Knockout , Animals , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Mast Cells/immunology , Mast Cells/metabolism , Dinoprostone/metabolism , Mice , Interleukin-33/metabolism , Humans , Lung/immunology , Lung/metabolism , Lung/pathology , Asthma/immunology , Asthma/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Mice, Inbred C57BL , Inflammation/immunology , Female , Male , Signal Transduction , Pneumonia/immunology , Pneumonia/metabolismABSTRACT
The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
Subject(s)
Deep Learning , Diagnostic Imaging , Pneumonia/diagnosis , Child , Humans , Neural Networks, Computer , Pneumonia/diagnostic imaging , ROC Curve , Reproducibility of Results , Tomography, Optical CoherenceABSTRACT
The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.
Subject(s)
Circadian Rhythm/immunology , Inflammation/metabolism , Neutrophils/metabolism , Pneumonia/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Cell Degranulation/immunology , Cytoplasmic Granules/immunology , Cytoplasmic Granules/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism , Humans , Inflammation/immunology , Mice , Neutrophils/immunology , Pneumonia/complications , Pneumonia/immunology , Proteome/immunology , Proteome/metabolism , Respiratory Distress Syndrome/immunologyABSTRACT
Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.
Subject(s)
Epigenesis, Genetic , Inflammation/etiology , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/metabolism , Animals , Biomarkers , Cellular Reprogramming , Cytokines/metabolism , Humans , Immune Tolerance , Immunophenotyping , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages, Alveolar/immunology , Mice , Monocytes/immunology , Monocytes/metabolism , Phagocytosis/immunology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolismABSTRACT
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Immunity, Innate/immunology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Pneumonia/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Disease Models, Animal , Female , Humans , Interferon Type I/immunology , Interferon-gamma/immunology , Keratin-18/genetics , Leukocytes/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Transgenic , Monocytes/immunology , NF-kappa B/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Pandemics , Pneumonia/genetics , Pneumonia/virology , Pneumonia, Viral/immunology , Promoter Regions, Genetic/genetics , SARS-CoV-2 , T-Lymphocytes/immunology , Vero Cells , Virus Replication/immunologyABSTRACT
Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.
Subject(s)
Immunity, Innate , Pneumonia , Humans , Dopamine/metabolism , Lymphocytes , Lung/metabolism , Pneumonia/metabolism , Inflammation/metabolism , Interleukin-33/metabolismABSTRACT
Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.
Subject(s)
Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Interleukin-1 Receptor Accessory Protein/antagonists & inhibitors , Peritonitis/immunology , Pneumonia/immunology , Psoriasis/immunology , A549 Cells , Animals , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Imiquimod/toxicity , Inflammation/pathology , Interleukin-1/immunology , Interleukin-1 Receptor Accessory Protein/immunology , Interleukin-1beta/immunology , Interleukin-33/immunology , Male , Mice , Mice, Inbred C57BL , Ovalbumin/toxicity , Peritonitis/drug therapy , Peritonitis/pathology , Pneumonia/drug therapy , Pneumonia/pathology , Psoriasis/drug therapy , Psoriasis/pathology , Signal Transduction/immunology , Uric Acid/toxicityABSTRACT
Follicular regulatory T (TFR) cells have specialized roles in modulating follicular helper T (TFH) cell activation of B cells. However, the precise role of TFR cells in controlling antibody responses to foreign antigens and autoantigens in vivo is still unclear due to a lack of specific tools. A TFR cell-deleter mouse was developed that selectively deletes TFR cells, facilitating temporal studies. TFR cells were found to regulate early, but not late, germinal center (GC) responses to control antigen-specific antibody and B cell memory. Deletion of TFR cells also resulted in increased self-reactive immunoglobulin (Ig) G and IgE. The increased IgE levels led us to interrogate the role of TFR cells in house dust mite models. TFR cells were found to control TFH13 cell-induced IgE. In vivo, loss of TFR cells increased house-dust-mite-specific IgE and lung inflammation. Thus, TFR cells control IgG and IgE responses to vaccines, allergens and autoantigens, and exert critical immunoregulatory functions before GC formation.
Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Hypersensitivity/immunology , Pneumonia/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Dermatophagoides/immunology , Autoantigens/immunology , Clonal Deletion/genetics , Disease Models, Animal , Humans , Immune Tolerance , Immunity, Humoral , Immunoglobulin E/metabolism , Immunoglobulin G/metabolism , Immunologic Memory , Interleukin-13/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyroglyphidae/immunologyABSTRACT
While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.
Subject(s)
COVID-19 , Pneumonia , Disease Progression , Humans , SARS-CoV-2ABSTRACT
Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.
Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Angiotensin-Converting Enzyme 2/metabolism , Antigen Presentation , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Female , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Male , Middle Aged , Natural Killer T-Cells/immunology , Pneumonia/immunology , Pneumonia/pathology , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolismABSTRACT
Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.
Subject(s)
Adenosine Triphosphate/metabolism , DNA, Mitochondrial/biosynthesis , Inflammasomes/drug effects , Metformin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/prevention & control , Animals , COVID-19/metabolism , COVID-19/prevention & control , Cytokines/genetics , Cytokines/metabolism , DNA, Mitochondrial/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Metformin/therapeutic use , Mice , Nucleoside-Phosphate Kinase/metabolism , Pneumonia/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/pathogenicityABSTRACT
Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.