Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.651
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 52(D1): D1661-D1667, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37650644

ABSTRACT

The genus Camellia consists of about 200 species, which include many economically important species widely used for making tea, ornamental flowers and edible oil. Here, we present an updated tea plant information archive for Camellia genomics (TPIA2; http://tpia.teaplants.cn) by integrating more novel large-scale genomic, transcriptomic, metabolic and genetic variation datasets as well as a variety of useful tools. Specifically, TPIA2 hosts all currently available and well assembled 10 Camellia genomes and their comprehensive annotations from three major sections of Camellia. A collection of 15 million SNPs and 950 950 small indels from large-scale genome resequencing of 350 diverse tea accessions were newly incorporated, followed by the implementation of a novel 'Variation' module to facilitate data retrieval and analysis of the functionally annotated variome. Moreover, 116 Camellia transcriptomes were newly assembled and added, leading to a significant extension of expression profiles of Camellia genes to 13 developmental stages and eight abiotic/biotic treatments. An updated 'Expression' function has also been implemented to provide a comprehensive gene expression atlas for Camellia. Two novel analytic tools (e.g. Gene ID Convert and Population Genetic Analysis) were specifically designed to facilitate the data exchange and population genomics in Camellia. Collectively, TPIA2 provides diverse updated valuable genomic resources and powerful functions, and will continue to be an important gateway for functional genomics and population genetic studies in Camellia.


Subject(s)
Camellia , Databases, Genetic , Camellia/genetics , Camellia sinensis/genetics , Camellia sinensis/metabolism , Genome, Plant , Genomics , Tea/metabolism
2.
Plant J ; 117(3): 679-693, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921032

ABSTRACT

During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.


Subject(s)
Catechin , Cyclopentanes , Isoleucine/analogs & derivatives , Oxylipins , Transcriptome , Catechin/analysis , Catechin/metabolism , Chromatin/genetics , Chromatin/metabolism , Plant Breeding , Tea/chemistry , Tea/metabolism , Hormones/analysis , Hormones/metabolism , Terpenes/metabolism , Plant Leaves/metabolism
3.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38059663

ABSTRACT

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Subject(s)
Camellia sinensis , Colletotrichum , Cyclopentanes , Oxylipins , Camellia sinensis/genetics , Camellia sinensis/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Disease Resistance/genetics , Colletotrichum/physiology , Tea/metabolism , Signal Transduction
4.
Hepatology ; 79(6): 1324-1336, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38758104

ABSTRACT

BACKGROUND AND AIMS: Tea and coffee are widely consumed beverages worldwide. We evaluated their association with biliary tract cancer (BTC) incidence. APPROACH AND RESULTS: We pooled data from 15 studies in the Biliary Tract Cancers Pooling Project to evaluate associations between tea and coffee consumption and biliary tract cancer development. We categorized participants as nondrinkers (0 cup/day), moderate drinkers (>0 and <3 cups/day), and heavy drinkers (≥3 cups/day). We estimated multivariable HRs and 95% CIs using Cox models. During 29,911,744 person-years of follow-up, 851 gallbladder, 588 intrahepatic bile duct, 753 extrahepatic bile duct, and 458 ampulla of Vater cancer cases were diagnosed. Individuals who drank tea showed a statistically significantly lower incidence rate of gallbladder cancer (GBC) relative to tea nondrinkers (HR=0.77; 95% CI, 0.64-0.91), and intrahepatic bile duct cancer (IHBDC) had an inverse association (HR=0.81; 95% CI, 0.66-1.00). However, no associations were observed for extrahepatic bile duct cancer (EHBDC) or ampulla of Vater cancer (AVC). In contrast, coffee consumption was positively associated with GBC, with a higher incidence rate for individuals consuming more coffee (HR<3 cups/day =1.29; 95% CI, 1.01-1.66; HR≥3 cups/day =1.49; 95% CI, 1.11-1.99, Ptrend=0.01) relative to coffee nondrinkers. However, there was no association between coffee consumption and GBC when restricted to coffee drinkers. There was little evidence of associations between coffee consumption and other biliary tract cancers. CONCLUSIONS: Tea consumption was associated with a lower incidence of GBC and possibly IHBDC. Further research is warranted to replicate the observed positive association between coffee and GBC.


Subject(s)
Biliary Tract Neoplasms , Coffee , Tea , Humans , Male , Female , Middle Aged , Biliary Tract Neoplasms/epidemiology , Biliary Tract Neoplasms/etiology , Aged , Incidence , Gallbladder Neoplasms/epidemiology , Gallbladder Neoplasms/etiology , Gallbladder Neoplasms/prevention & control , Risk Factors , Adult , Bile Duct Neoplasms/epidemiology , Bile Duct Neoplasms/etiology
5.
Plant J ; 113(3): 576-594, 2023 02.
Article in English | MEDLINE | ID: mdl-36534122

ABSTRACT

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Subject(s)
Camellia sinensis , Tannins , Tannins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Tea/genetics , Tea/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism
6.
Plant J ; 115(4): 1051-1070, 2023 08.
Article in English | MEDLINE | ID: mdl-37162381

ABSTRACT

Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.


Subject(s)
Arabidopsis , Camellia sinensis , Catechin , Anthocyanins , Camellia sinensis/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Tea , Gene Expression Regulation, Plant
7.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438984

ABSTRACT

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Phylogeny , Methyltransferases/genetics , Tea
8.
BMC Genomics ; 25(1): 207, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395740

ABSTRACT

BACKGROUND: Darjeeling tea is a globally renowned beverage, which faces numerous obstacles in sexual reproduction, such as self-incompatibility, poor seed germination, and viability, as well as issues with vegetative propagation. Somatic embryogenesis (SE) is a valuable method for rapid clonal propagation of Darjeeling tea. However, the metabolic regulatory mechanisms underlying SE in Darjeeling tea remain largely unknown. To address this, we conducted an integrated metabolomics and transcriptomics analysis of embryogenic callus (EC), globular embryo (GE), and heart-shaped embryo (HE). RESULTS: The integrated analyses showed that various genes and metabolites involved in the phenylpropanoid pathway, auxin biosynthesis pathway, gibberellin, brassinosteroid and amino acids biosynthesis pathways were differentially enriched in EC, GE, and HE. Our results revealed that despite highly up-regulated auxin biosynthesis genes YUC1, TAR1 and AAO1 in EC, endogenous indole-3-acetic acid (IAA) was significantly lower in EC than GE and HE. However, bioactive Gibberellin A4 displayed higher accumulation in EC. We also found higher BABY BOOM (BBM) and Leafy cotyledon1 (LEC1) gene expression in GE along with high accumulation of castasterone, a brassinosteroid. Total flavonoids and phenolics levels were elevated in GE and HE compared to EC, especially the phenolic compound chlorogenic acid was highly accumulated in GE. CONCLUSIONS: Integrated metabolome and transcriptome analysis revealed enriched metabolic pathways, including auxin biosynthesis and signal transduction, brassinosteroid, gibberellin, phenylpropanoid biosynthesis, amino acids metabolism, and transcription factors (TFs) during SE in Darjeeling tea. Notably, EC displayed lower endogenous IAA levels, conducive to maintaining differentiation, while higher IAA concentration in GE and HE was crucial for preserving embryo identity. Additionally, a negative correlation between bioactive gibberellin A4 (GA4) and IAA was observed, impacting callus growth in EC. The high accumulation of chlorogenic acid, a phenolic compound, might contribute to the low success rate in GE and HE formation in Darjeeling tea. TFs such as BBM1, LEC1, FUS3, LEA, WOX3, and WOX11 appeared to regulate gene expression, influencing SE in Darjeeling tea.


Subject(s)
Brassinosteroids , Gibberellins , Chlorogenic Acid , Gene Expression Profiling , Indoleacetic Acids/metabolism , Tea , Embryonic Development , Amino Acids/metabolism , Gene Expression Regulation, Plant
9.
BMC Genomics ; 25(1): 120, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280985

ABSTRACT

To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Phylogeny , Plant Growth Regulators/pharmacology , Promoter Regions, Genetic , Tea , Gene Expression Regulation, Plant , Plant Proteins/metabolism
10.
BMC Genomics ; 25(1): 114, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273225

ABSTRACT

BACKGROUND: Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT: We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS: We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.


Subject(s)
Genome, Chloroplast , Theaceae , Phylogeny , Theaceae/genetics , Genomics , Codon/genetics , Chloroplasts/genetics , RNA, Transfer/genetics , Tea
11.
Anal Chem ; 96(1): 301-308, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38102984

ABSTRACT

Developing new strategies to construct sensor arrays that can effectively distinguish multiple natural components with similar structures in mixtures is an exceptionally challenging task. Here, we propose a new multilocus distance-modulated indicator displacement assay (IDA) strategy for constructing a sensor array, incorporating machine learning optimization to identify polyphenols. An 8-element array, comprising two fluorophores and their six dynamic covalent complexes (C1-C6) formed by pairing two fluorophores with three distinct distance-regulated quenchers, has been constructed. Polyphenols with diverse spatial arrangements and combinatorial forms compete with the fluorophores by forming pseudocycles with quenchers within the complexes, leading to varying degrees of fluorescence recovery. The array accurately and effectively distinguished four tea polyphenols and 16 tea varieties, thereby demonstrating the broad applicability of the multilocus distance-modulated IDA array in detecting polyhydroxy foods and natural medicines.


Subject(s)
Polyphenols , Tea , Spectrometry, Fluorescence , Machine Learning
12.
BMC Plant Biol ; 24(1): 79, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287242

ABSTRACT

BACKGROUND: Guizhou Plateau, as one of the original centers of tea plant, has a profound multi-ethnic cultural heritage and abundant tea germplasm resources. However, the impact of indigenous community factors on the genetic diversity, population structure and geographical distribution of tea plant is still unclear. RESULTS: Using the genotyping-by-sequencing (GBS) approach, we collected 415 tea plant accessions from the study sites, estimated genetic diversity, developed a core collection, and conducted a genome-wide association study (GWAS) based on 99,363 high-quality single-nucleotide polymorphisms (SNPs). A total of 415 tea accessions were clustered into six populations (GP01, GP02, GP03, GP04, GP05 and GP06), and the results showed that GP04 and GP05 had the highest and lowest genetic diversity (Pi = 0.214 and Pi = 0.145, respectively). Moreover, 136 tea accessions (33%) were selected to construct the core set that can represent the genetic diversity of the whole collection. By analyzing seven significant SNP markers associated with the traits such as the germination period of one bud and two leaves (OTL) and the germination period of one bud and three leaves (OtL), four candidate genes possibly related to OTL and OtL were identified. CONCLUSIONS: This study revealed the impact of indigenous communities on the population structure of 415 tea accessions, indicating the importance of cultural practices for protection and utilization of tea plant genetic resources. Four potential candidate genes associated with the OTL and OtL of tea plant were also identified, which will facilitate genetic research, germplasm conservation, and breeding.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Plant Breeding , Phenotype , Tea , Polymorphism, Single Nucleotide
13.
BMC Plant Biol ; 24(1): 51, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38225581

ABSTRACT

BACKGROUND: Caffeic acid O-methyltransferase (COMT) is a key enzyme that regulates melatonin synthesis and is involved in regulating the growth, development, and response to abiotic stress in plants. Tea plant is a popular beverage consumed worldwide, has been used for centuries for its medicinal properties, including its ability to reduce inflammation, improve digestion, and boost immune function. By analyzing genetic variation within the COMT family, while helping tea plants resist adversity, it is also possible to gain a deeper understanding of how different tea varieties produce and metabolize catechins, then be used to develop new tea cultivars with desired flavor profiles and health benefits. RESULTS: In this study, a total of 25 CsCOMT genes were identified based on the high-quality tea (Camellia sinensis) plant genome database. Phylogenetic tree analysis of CsCOMTs with COMTs from other species showed that COMTs divided into four subfamilies (Class I, II, III, IV), and CsCOMTs was distributed in Class I, Class II, Class III. CsCOMTs not only undergoes large-scale gene recombination in pairs internally in tea plant, but also shares 2 and 7 collinear genes with Arabidopsis thaliana and poplar (Populus trichocarpa), respectively. The promoter region of CsCOMTs was found to be rich in cis-acting elements associated with plant growth and stress response. By analyzing the previously transcriptome data, it was found that some members of CsCOMT family exhibited significant tissue-specific expression and differential expression under different stress treatments. Subsequently, we selected six CsCOMTs to further validated their expression levels in different tissues organ using qRT-PCR. In addition, we silenced the CsCOMT19 through virus-induced gene silencing (VIGS) method and found that CsCOMT19 positively regulates the synthesis of melatonin in tea plant. CONCLUSION: These results will contribute to the understanding the functions of CsCOMT gene family and provide valuable information for further research on the role of CsCOMT genes in regulating tea plant growth, development, and response to abiotic stress.


Subject(s)
Camellia sinensis , Melatonin , Methyltransferases , Camellia sinensis/physiology , Melatonin/genetics , Phylogeny , Tea , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
14.
BMC Plant Biol ; 24(1): 229, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561653

ABSTRACT

BACKGROUND: BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS: In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS: Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.


Subject(s)
Amines , Camellia sinensis , Disulfides , Camellia sinensis/metabolism , Phylogeny , Genome, Plant , Tea/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
15.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468197

ABSTRACT

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Subject(s)
Camellia sinensis , Camellia , Humans , DNA Barcoding, Taxonomic/methods , Camellia sinensis/genetics , Tea/genetics , DNA , Phylogeny
16.
Breast Cancer Res Treat ; 203(1): 29-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726449

ABSTRACT

PURPOSE: This research focused on the identification of herbal compounds as potential anti-cancer drugs, especially for breast cancer, that involved the recognition of Notch downstream targets NOTCH proteins (1-4) specifically expressed in breast tumours as biomarkers for prognosis, along with P53 tumour antigens, that were used as comparisons to check the sensitivity of the herbal bio-compounds. METHODS: After investigating phytochemical candidates, we employed an approach for computer-aided drug design and analysis to find strong breast cancer inhibitors. The present study utilized in silico analyses and protein docking techniques to characterize and rank selected bio-compounds for their efficiency in oncogenic inhibition for use in precise carcinomic cell growth control. RESULTS: Several of the identified phytocompounds found in herbs followed Lipinski's Rule of Five and could be further investigated as potential medicinal molecules. Based on the Vina score obtained after the docking process, the active compound Epigallocatechin gallate in green tea with NOTCH (1-4) and P53 proteins showed promising results for future drug repurposing. The stiffness and binding stability of green tea pharmacological complexes were further elucidated by the molecular dynamic simulations carried out for the highest scoring phytochemical ligand complex. CONCLUSION: The target-ligand complex of green tea active compound Epigallocatechin gallate with NOTCH (1-4) had the potential to become potent anti-breast cancer therapeutic candidates following further research involving wet-lab experiments.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Molecular Docking Simulation , Ligands , Tumor Suppressor Protein p53/genetics , Tea/chemistry , Biomarkers , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
17.
Plant Biotechnol J ; 22(4): 1001-1016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38048231

ABSTRACT

As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5, and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.


Subject(s)
Camellia sinensis , Genome-Wide Association Study , Metabolome/genetics , Metabolomics , Quantitative Trait Loci/genetics , Flavonoids/genetics , Flavonoids/metabolism , Camellia sinensis/genetics , Tea/genetics , Tea/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
18.
Cancer Causes Control ; 35(3): 417-427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37812336

ABSTRACT

PURPOSE: While community engagement has been a longstanding aspect of cancer-relevant research in social and behavioral sciences, it is far less common in basic/translational/clinical research. With the National Cancer Institute's incorporation of Community Outreach and Engagement into the Cancer Center Support Grant guidelines, successful models are desirable. We report on a pilot study supported by the University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), that used a community-engaged, data-driven process to inform a pre-clinical study of the impact of antioxidants on the efficacy of platinum-based chemotherapeutics. METHODS: We conducted a survey of UMGCCC catchment area residents (n = 120) to identify commonly used antioxidants. We then evaluated the effect of individually combining commonly used antioxidants from the survey (vitamin C, green tea, and melatonin) with platinum agents in models of non-small cell lung cancer (A549), colon adenocarcinoma (SW620) and head and neck squamous cell carcinoma (FaDu). RESULTS: In vitro, the anti-neoplastic activity of each chemotherapy was not potentiated by any of the antioxidants. Instead, when combined at fixed ratios, most antioxidant-chemotherapy combinations were antagonistic. In vivo, addition of antioxidants did not improve chemotherapeutic efficacy and in a FaDu-tumor bearing model, cisplatin-mediated tumor growth inhibition was significantly impeded by the addition of epigallocatechin gallate, the main antioxidant in green tea. CONCLUSION: These initial findings do not support addition of antioxidant supplementation to improve platinum-based chemotherapeutic efficacy. This study's approach can serve as a model of how to bring together the two seemingly discordant areas of basic research and community engagement.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Lung Neoplasms , Humans , Antioxidants/pharmacology , Pilot Projects , Colonic Neoplasms/drug therapy , Tea
19.
BMC Microbiol ; 24(1): 38, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281024

ABSTRACT

BACKGROUND: Tea is one of the most widely consumed beverages in the world, with significant economic and cultural value. However, tea production faces many challenges due to various biotic and abiotic stresses, among which fungal diseases are particularly devastating. RESULTS: To understand the identity and pathogenicity of isolates recovered from tea plants with symptoms of wilt, phylogenetic analyses and pathogenicity assays were conducted. Isolates were characterized to the species level by sequencing the ITS, tef-1α, tub2 and rpb2 sequences and morphology. Four Fusarium species were identified: Fusarium fujikuroi, Fusarium solani, Fusarium oxysporum, and Fusarium concentricum. The pathogenicity of the Fusarium isolates was evaluated on 1-year-old tea plants, whereby F. fujikuroi OS3 and OS4 strains were found to be the most virulent on tea. CONCLUSIONS: To the best of our knowledge, this is the first report of tea rot caused by F. fujikuroi in the world. This provides the foundation for the identification and control of wilt disease in tea plants.


Subject(s)
Camellia sinensis , Fusarium , Fusarium/genetics , Phylogeny , Virulence , China , Tea
20.
Plant Physiol ; 192(2): 1321-1337, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36879396

ABSTRACT

Acidic tea (Camellia sinensis) plantation soil usually suffers from magnesium (Mg) deficiency, and as such, application of fertilizer containing Mg can substantially increase tea quality by enhancing the accumulation of nitrogen (N)-containing chemicals such as amino acids in young tea shoots. However, the molecular mechanisms underlying the promoting effects of Mg on N assimilation in tea plants remain unclear. Here, both hydroponic and field experiments were conducted to analyze N, Mg, metabolite contents, and gene expression patterns in tea plants. We found that N and amino acids accumulated in tea plant roots under Mg deficiency, while metabolism of N was enhanced by Mg supplementation, especially under a low N fertilizer regime. 15N tracing experiments demonstrated that assimilation of N was induced in tea roots following Mg application. Furthermore, weighted gene correlation network analysis (WGCNA) analysis of RNA-seq data suggested that genes encoding glutamine synthetase isozymes (CsGSs), key enzymes regulating N assimilation, were markedly regulated by Mg treatment. Overexpression of CsGS1.1 in Arabidopsis (Arabidopsis thaliana) resulted in a more tolerant phenotype under Mg deficiency and increased N assimilation. These results validate our suggestion that Mg transcriptionally regulates CsGS1.1 during the enhanced assimilation of N in tea plant. Moreover, results of a field experiment demonstrated that high Mg and low N had positive effects on tea quality. This study deepens our understanding of the molecular mechanisms underlying the interactive effects of Mg and N in tea plants while also providing both genetic and agronomic tools for future improvement of tea production.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Camellia sinensis/metabolism , Magnesium/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Nitrogen/metabolism , Fertilizers , Amino Acids/metabolism , Tea/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL