Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 52(11): 6424-6440, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38801073

ABSTRACT

TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA, Single-Stranded , Intracellular Signaling Peptides and Proteins , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA/metabolism , DNA/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics
2.
BMC Cancer ; 24(1): 78, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225543

ABSTRACT

BACKGROUND: Chemoradiotherapy is a critical treatment for patients with locally advanced and unresectable non-small cell lung cancer (NSCLC), and it is essential to identify high-risk patients as early as possible owing to the high incidence of radiation pneumonitis (RP). Increasing attention is being paid to the effects of endogenous factors for RP. This study aimed to investigate the value of computed tomography (CT)-based radiomics combined with genomics in analyzing the risk of grade ≥ 2 RP in unresectable stage III NSCLC. METHODS: In this retrospective multi-center observational study, 100 patients with unresectable stage III NSCLC who were treated with chemoradiotherapy were analyzed. Radiomics features of the entire lung were extracted from pre-radiotherapy CT images. The least absolute shrinkage and selection operator algorithm was used for optimal feature selection to calculate the Rad-score for predicting grade ≥ 2 RP. Genomic DNA was extracted from formalin-fixed paraffin-embedded pretreatment biopsy tissues. Univariate and multivariate logistic regression analyses were performed to identify predictors of RP for model development. The area under the receiver operating characteristic curve was used to evaluate the predictive capacity of the model. Statistical comparisons of the area under the curve values between different models were performed using the DeLong test. Calibration and decision curves were used to demonstrate discriminatory and clinical benefit ratios, respectively. RESULTS: The Rad-score was constructed from nine radiomic features to predict grade ≥ 2 RP. Multivariate analysis demonstrated that histology, Rad-score, and XRCC1 (rs25487) allele mutation were independent high-risk factors correlated with RP. The area under the curve of the integrated model combining clinical factors, radiomics, and genomics was significantly higher than that of any single model (0.827 versus 0.594, 0.738, or 0.641). Calibration and decision curve analyses confirmed the satisfactory clinical feasibility and utility of the nomogram. CONCLUSION: Histology, Rad-score, and XRCC1 (rs25487) allele mutation could predict grade ≥ 2 RP in patients with locally advanced unresectable NSCLC after chemoradiotherapy, and the integrated model combining clinical factors, radiomics, and genomics demonstrated the best predictive efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Pneumonitis , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiation Pneumonitis/etiology , Radiation Pneumonitis/genetics , Genetic Markers , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Tomography , Retrospective Studies , X-ray Repair Cross Complementing Protein 1
3.
Mol Biol Rep ; 51(1): 893, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115699

ABSTRACT

BACKGROUND: In Bangladesh, only a fraction of prostate cancer patients are diagnosed annually due to lack of symptom awareness and screening challenges, resulting in high mortality. Aiming to improve screening methods, we evaluated X-ray cross-complementing gene 1 (XRCC1) Arg194Gln and Xeroderma pigmentosum group D (XPD) Lys751Gln polymorphisms to determine their relevance as potential markers for predicting prostate cancer risk, severity and clinical parameters in Bangladeshi population. METHODS AND RESULTS: This study included 132 prostate cancer patients and 135 healthy controls. Genotype analysis was done from blood samples by the PCR-RFLP method. The XRCC1 Trp/Trp genotype was associated with prostate cancer (ORadj = 5.51; 95% CI = 1.13-26.78; p-value = 0.03) compared to Arg/Arg genotype. No significant association was found between the XPD variants and prostate cancer risk. The XRCC1 Trp/Trp genotype increased prostate cancer risk in smokers and non-smokers but was statistically non-significant. In individuals without a family history of cancer, the XRCC1 Trp/Trp genotype had a non-significant 4.64-fold higher risk (ORadj=4.64; 95% CI = 0.88-24.36; p-value = 0.07), while the XPD Gln/Gln had a 2.66-fold non-significant higher risk (ORadj=2.66; 95% CI = 0.88-8.10; p-value = 0.09). The XRCC1 Trp/Trp variant was associated with hematuria risk, higher mean serum creatinine, and mean prostate-specific antigen (PSA) levels in prostate cancer patients. The XPD Gln/Gln variant was only associated with higher mean serum creatinine levels. CONCLUSION: Our findings suggest that XRCC1 screening may be used as a biomarker for prostate cancer to improve early diagnosis in Bangladesh.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Prostatic Neoplasms , X-ray Repair Cross Complementing Protein 1 , Xeroderma Pigmentosum Group D Protein , Humans , Male , X-ray Repair Cross Complementing Protein 1/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/epidemiology , Xeroderma Pigmentosum Group D Protein/genetics , Bangladesh/epidemiology , Middle Aged , Aged , Polymorphism, Single Nucleotide/genetics , Genotype , Case-Control Studies , Risk Factors , DNA-Binding Proteins/genetics
4.
BMC Cardiovasc Disord ; 24(1): 242, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724937

ABSTRACT

BACKGROUND: Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that increases the risk of morbidity and mortality by disrupting cardiac innervation. Recent evidence suggests that CAN may manifest even before the onset of DM, with prediabetes and metabolic syndrome potentially serving as precursors. This study aims to identify genetic markers associated with CAN development in the Kazakh population by investigating the SNPs of specific genes. MATERIALS AND METHODS: A case-control study involved 82 patients with CAN (cases) and 100 patients without CAN (controls). A total of 182 individuals of Kazakh nationality were enrolled from a hospital affiliated with the RSE "Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan". 7 SNPs of genes FTO, PPARG, SNCA, XRCC1, FLACC1/CASP8 were studied. Statistical analysis was performed using Chi-square methods, calculation of odds ratios (OR) with 95% confidence intervals (CI), and logistic regression in SPSS 26.0. RESULTS: Among the SNCA gene polymorphisms, rs2737029 was significantly associated with CAN, almost doubling the risk of CAN (OR 2.03(1.09-3.77), p = 0.03). However, no statistically significant association with CAN was detected with the rs2736990 of the SNCA gene (OR 1.00 CI (0.63-1.59), p = 0.99). rs12149832 of the FTO gene increased the risk of CAN threefold (OR 3.22(1.04-9.95), p = 0.04), while rs1801282 of the PPARG gene and rs13016963 of the FLACC1 gene increased the risk twofold (OR 2.56(1.19-5.49), p = 0.02) and (OR 2.34(1.00-5.46), p = 0.05) respectively. rs1108775 and rs1799782 of the XRCC1 gene were associated with reduced chances of developing CAN both before and after adjustment (OR 0.24, CI (0.09-0.68), p = 0.007, and OR 0.43, CI (0.22-0.84), p = 0.02, respectively). CONCLUSION: The study suggests that rs2737029 (SNCA gene), rs12149832 (FTO gene), rs1801282 (PPARG gene), and rs13016963 (FLACC1 gene) may be predisposing factors for CAN development. Additionally, SNPs rs1108775 and rs1799782 (XRCC1 gene) may confer resistance to CAN. Only one polymorphism rs2736990 of the SNCA gene was not associated with CAN.


Subject(s)
Genetic Predisposition to Disease , PPAR gamma , Polymorphism, Single Nucleotide , Humans , Male , Middle Aged , Female , Case-Control Studies , Kazakhstan/epidemiology , Risk Factors , PPAR gamma/genetics , Aged , Phenotype , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Risk Assessment , Genetic Association Studies , X-ray Repair Cross Complementing Protein 1/genetics , Heart Diseases/genetics , Heart Diseases/ethnology , Heart Diseases/diagnosis , Autonomic Nervous System Diseases/genetics , Autonomic Nervous System Diseases/diagnosis , Adult , Diabetic Neuropathies/genetics , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/ethnology , Diabetic Neuropathies/epidemiology , Autonomic Nervous System/physiopathology , Genetic Markers , alpha-Synuclein
5.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000034

ABSTRACT

Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1. The stimulation of the Pol λ activity was observed only at micromolar XRCC1 concentrations, which were well above the nanomolar dissociation constant determined for the XRCC1-Pol λ complex and pointed to the presence of an auxiliary stimulatory factor in addition to protein-protein interactions. Indeed, according to dynamic light scattering measurements, the stimulation of the Pol λ activity by XRCC1 was coupled with microphase separation in a protein-DNA mixture. Fluorescence microscopy revealed colocalization of Pol λ, XRCC1, and gapped DNA within the microphases. Thus, stimulation of Pol λ activity is caused both by its interaction with XRCC1 and by specific conditions of microphase separation; this phenomenon is shown for the first time.


Subject(s)
DNA Polymerase beta , DNA Repair , X-ray Repair Cross Complementing Protein 1 , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , DNA Polymerase beta/metabolism , Humans , DNA/metabolism , Protein Binding
6.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673753

ABSTRACT

In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the GSTP1 and XRCC1 genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous GSTP1 AG and XRCC1 (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the GSTP1 and XRCC1 genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.


Subject(s)
Chromosomal Instability , Farmers , Glutathione S-Transferase pi , Occupational Exposure , Pesticides , X-ray Repair Cross Complementing Protein 1 , Humans , X-ray Repair Cross Complementing Protein 1/genetics , Glutathione S-Transferase pi/genetics , Pesticides/toxicity , Pesticides/adverse effects , Occupational Exposure/adverse effects , Male , Chromosomal Instability/drug effects , Adult , Middle Aged , Female , Biomarkers , Chromosome Aberrations/chemically induced , Colombia , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
7.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203276

ABSTRACT

Colorectal cancer (CRC) is a highly prevalent form of neoplasm worldwide. Capecitabine, an oral antimetabolite, is widely used for CRC treatment; however, there exists substantial variation in individual therapy response. This may be due to genetic variations in genes involved in capecitabine pharmacodynamics (PD). In this study, we investigated the role of single-nucleotide polymorphisms (SNPs) related to capecitabine's PD on disease-free survival (DFS) in CRC patients under adjuvant treatment. Thirteen SNPs in the TYMS, ENOSF1, MTHFR, ERCC1/2, and XRCC1/3 genes were genotyped in 142 CRC patients using real-time PCR with predesigned TaqMan® probes. A significant association was found between favorable DFS and the ENOSF1 rs2612091-T allele (p = 0.010; HR = 0.34; 95% CI = 0.14-0.83), as well as with the TYMS/ENOSF1 region ACT haplotype (p = 0.012; HR = 0.37; 95% CI = 0.17-0.80). Other factors such as low histological grade (p = 0.009; HR = 0.34; 95% CI = 0.14-0.79) and a family history of cancer (p = 0.040; HR = 0.48; 95% CI = 0.23-0.99) were also linked to improved DFS. Therefore, the SNP ENOSF1 rs2612091 could be considered as a predictive genetic biomarker for survival in CRC patients receiving capecitabine-based adjuvant regimens.


Subject(s)
Colorectal Neoplasms , Polymorphism, Single Nucleotide , Humans , Capecitabine/pharmacology , Capecitabine/therapeutic use , Combined Modality Therapy , Alleles , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , X-ray Repair Cross Complementing Protein 1
8.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38135179

ABSTRACT

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Subject(s)
DNA Breaks, Single-Stranded , DNA Ligase ATP , DNA Polymerase beta , Excision Repair , X-ray Repair Cross Complementing Protein 1 , Humans , DNA Ligase ATP/chemistry , DNA Polymerase beta/chemistry , Protein Binding , X-ray Repair Cross Complementing Protein 1/chemistry , X-ray Repair Cross Complementing Protein 1/genetics
9.
Cells ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38391916

ABSTRACT

Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase ß, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.


Subject(s)
DNA Repair , Excision Repair , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Extracts , Cell Line , X-ray Repair Cross Complementing Protein 1/genetics , Poly (ADP-Ribose) Polymerase-1/genetics
10.
Aging (Albany NY) ; 16(1): 872-910, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217545

ABSTRACT

X-ray repair cross-complementation group 1 (XRCC1) is a pivotal contributor to base excision repair, and its dysregulation has been implicated in the oncogenicity of various human malignancies. However, a comprehensive pan-cancer analysis investigating the prognostic value, immunological functions, and epigenetic associations of XRCC1 remains lacking. To address this knowledge gap, we conducted a systematic investigation employing bioinformatics techniques across 33 cancer types. Our analysis encompassed XRCC1 expression levels, prognostic and diagnostic implications, epigenetic profiles, immune and molecular subtypes, Tumor Mutation Burden (TMB), Microsatellite Instability (MSI), immune checkpoints, and immune infiltration, leveraging data from TCGA, GTEx, CELL, Human Protein Atlas, Ualcan, and cBioPortal databases. Notably, XRCC1 displayed both positive and negative correlations with prognosis across different tumors. Epigenetic analysis revealed associations between XRCC1 expression and DNA methylation patterns in 10 cancer types, as well as enhanced phosphorylation. Furthermore, XRCC1 expression demonstrated associations with TMB and MSI in the majority of tumors. Interestingly, XRCC1 gene expression exhibited a negative correlation with immune cell infiltration levels, except for a positive correlation with M1 and M2 macrophages and monocytes in most cancers. Additionally, we observed significant correlations between XRCC1 and immune checkpoint gene expression levels. Lastly, our findings implicated XRCC1 in DNA replication and repair processes, shedding light on the precise mechanisms underlying its oncogenic effects. Overall, our study highlights the potential of XRCC1 as a prognostic and immunological pan-cancer biomarker, thereby offering a novel target for tumor immunotherapy.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , X-Rays , Prognosis , Radiography , Biomarkers, Tumor/genetics , Microsatellite Instability , Neoplasms/genetics , X-ray Repair Cross Complementing Protein 1/genetics
11.
Discov Med ; 36(180): 82-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273748

ABSTRACT

BACKGROUND: X-ray repair cross complementing 1 (XRCC1) rs1799782 polymorphism is associated with an increased risk of lung cancer (LC). The aim of this study is to analyze the underlying biological mechanisms. METHODS: Dual luciferase reporter assay was utilized to verify the impact of XRCC1 polymorphism upon promoter activity of XRCC1. Cell counting kit-8 (CCK-8) assay, colony formation assay, senescence-associated beta-galactosidase (SA-ß-gal) staining, and immunofluorescent staining were used to assess the viability, proliferation, senescence, and DNA damage of LC cells. Senescence-related proteins (cyclin dependent kinase inhibitor 1A (P21) and eukaryotic translation elongation factor 1-alpha (EF1A)) were quantified by Western blot. Chromatin immunoprecipitation was applied to validate the binding affinity of forkhead box A1 (FOXA1) and XRCC1. FOXA1-specific short hairpin RNA (shFOXA1) was used to perform the rescue assay. RESULTS: In LC cells, XRCC1 rs1799782 promoted viability and proliferation, inhibited senescence, and resulted in upregulation of EF1A as well as downregulation of P21 and phosphorylated H2A.X variant histone (γH2AX). XRCC1 rs1799782 promoted FOXA1-mediated transcription of XRCC1 through enhancing its binding to FOXA1. shFOXA1 counteracted the effects of XRCC1 rs1799782 upon the viability, proliferation, and senescence of LC cells. CONCLUSIONS: XRCC1 rs1799782 promotes DNA damage repair in LC cells through enhancing its binding to FOXA1, which facilitates FOXA1-mediated transcription of XRCC1.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , DNA-Binding Proteins/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Polymorphism, Genetic , DNA Damage , DNA Repair/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
12.
Br J Biomed Sci ; 81: 11835, 2024.
Article in English | MEDLINE | ID: mdl-38450253

ABSTRACT

Background: Publications on the associations of genetic variants with the response to platinum-based chemotherapy (PBC) in NSCLC patients have surged over the years, but the results have been inconsistent. Here, a comprehensive meta-analysis was conducted to combine eligible studies for a more accurate assessment of the pharmacogenetics of PBC in NSCLC patients. Methods: Relevant publications were searched in PubMed, Scopus, and Web of Science databases through 15 May 2021. Inclusion criteria for eligible publications include studies that reported genotype and allele frequencies of NSCLC patients treated with PBC, delineated by their treatment response (sensitive vs. resistant). Publications on cell lines or animal models, duplicate reports, and non-primary research were excluded. Epidemiological credibility of cumulative evidence was assessed using the Newcastle-Ottawa Scale (NOS) and Venice criteria. Begg's and Egger's tests were used to assess publication bias. Cochran's Q-test and I2 test were used to calculate the odds ratio and heterogeneity value to proceed with the random effects or fixed-effects method. Venice criteria were used to assess the strength of evidence, replication methods and protection against bias in the studies. Results: A total of 121 publications comprising 29,478 subjects were included in this study, and meta-analyses were performed on 184 genetic variants. Twelve genetic variants from 10 candidate genes showed significant associations with PBC response in NSCLC patients with strong or moderate cumulative epidemiological evidence (increased risk: ERCC1 rs3212986, ERCC2 rs1799793, ERCC2 rs1052555, and CYP1A1 rs1048943; decreased risk: GSTM1 rs36631, XRCC1 rs1799782 and rs25487, XRCC3 rs861539, XPC rs77907221, ABCC2 rs717620, ABCG2 rs2231142, and CDA rs1048977). Bioinformatics analysis predicted possible damaging or deleterious effects for XRCC1 rs1799782 and possible low or medium functional impact for CYP1A1 rs1048943. Conclusion: Our results provide an up-to-date summary of the association between genetic variants and response to PBC in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cytochrome P-450 CYP1A1 , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Genotype , Computational Biology , Xeroderma Pigmentosum Group D Protein , X-ray Repair Cross Complementing Protein 1
13.
J Environ Pathol Toxicol Oncol ; 43(2): 13-27, 2024.
Article in English | MEDLINE | ID: mdl-38505910

ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare type of cancer, and its main risk factor is exposure to asbestos. Accordingly, our knowledge of the genomic structure of an MPM tumor is limited when compared to other cancers. In this study, we aimed to characterize complex genomic rearrangement patterns and variations to better understand the genomics of MPM tumors. We comparatively scanned 3 MPM tumor genomes by Whole-Genome Sequencing and High-Resolution SNP array. We also used various computational algorithms to detect both CNAs and complex chromosomal rearrangements. Genomic data obtained from each bioinformatics tool are interpreted comparatively to better understand CNAs and cancer-related Nucleotide variations in MPM tumors. In patients 1 and 2, we found pathogenic nucleotide variants of BAP1, RB1, and TP53. These two MPM genomes exhibited a highly rearranged chromosomal rearrangement pattern resembling Chromomanagesis particularly in the form of Chromoanasynthesis. In patient 3, we found nucleotide variants of important cancer-related genes, including TGFBR1, KMT2C, and PALLD, to have lower chromosomal rearrangement complexity compared with patients 1 and 2. We also detected several actionable nucleotide variants including XRCC1, ERCC2. We also discovered the SKA3-DDX10 fusion in two MPM genomes, which is a novel finding for MPM. We found that MPM genomes are very complex, suggesting that this highly rearranged pattern is strongly related to driver mutational status like BAP1, TP53 and RB1.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Humans , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/complications , Mesothelioma/chemically induced , Mesothelioma/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Asbestos/toxicity , Genomics , Nucleotides , Xeroderma Pigmentosum Group D Protein , X-ray Repair Cross Complementing Protein 1 , DEAD-box RNA Helicases
14.
Int J Immunopathol Pharmacol ; 38: 3946320241265263, 2024.
Article in English | MEDLINE | ID: mdl-38898405

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the most common and fatal primary liver cancer. Genetic variants of DNA repair systems can reduce DNA repair capability and increase HCC risk. Objectives: This study aimed to examine, in Egyptian hepatitis C virus (HCV) patients, the relationship between the X-ray repair cross-complementing group 1 (XRCC1) rs1799782 single nucleotide polymorphism (SNP) and HCC susceptibility. Methods: We included 100 adult HCV-positive patients with HCC and 100 adult HCV-positive patients with liver cirrhosis as pathological controls. XRCC1 rs1799782 SNP genotyping was done in both groups using quantitative real-time PCR (qPCR). The distribution of genotypes in patients and controls was compared using several inheritance models. Results: We found that the CT genotype, when analyzed under both the co-dominant (OR (95 % CI): 2.147 (1.184-3.893), p = .012) and the over-dominant (OR (95 % CI): 2.055 (1.153-3.660), p = .015) models, as well as the combined CT and TT genotypes under the dominant model (OR (95 % CI) of 1.991 (1.133-3.497), p = .017), were associated with increased susceptibility to HCC. The frequency of the T allele was higher among HCC participants (32%) compared to those with cirrhosis (23.5%) and carrying the T allele increased the risk of HCC by 1.532 times, however, these associations did not reach statistical significance (p-values >0.05). Moreover, the variant T allele was associated with worse clinical manifestations and laboratory results among the HCC group, but AFP levels were not affected significantly. Conclusions: Egyptians with XRCC1 rs1799782 SNP may have a higher risk of HCV-related HCC. More extensive multi-center prospective investigations must confirm this association.


Subject(s)
Carcinoma, Hepatocellular , Genetic Predisposition to Disease , Liver Neoplasms , Polymorphism, Single Nucleotide , X-ray Repair Cross Complementing Protein 1 , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/epidemiology , X-ray Repair Cross Complementing Protein 1/genetics , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/epidemiology , Male , Case-Control Studies , Egypt , Female , Middle Aged , Pilot Projects , Adult , Hepatitis C/complications , Hepatitis C/genetics , Risk Factors , Genotype
15.
Cell Metab ; 36(8): 1696-1710.e10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111285

ABSTRACT

Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3hi GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter's tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. In vitro and in vivo treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3hi GBM.


Subject(s)
Glioblastoma , Thyroid Hormone-Binding Proteins , X-ray Repair Cross Complementing Protein 1 , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Animals , Cell Line, Tumor , Mice , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Thyroid Hormones/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Aldehyde Oxidoreductases , Oxidoreductases Acting on CH-NH Group Donors
16.
Sci Rep ; 14(1): 3367, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38337001

ABSTRACT

To study the relationships between stromal cell-derived factor-1 (SDF-1ɑ) and renal cell carcinoma (RCC) susceptibility and the presence of single nucleotide polymorphisms in the human X-ray cross-complementary repair gene (XRCC1). Compare SDF-1 based on RCC related data in the TCGA database α, The expression difference of XRCC1 between RCC tissue and normal tissue; Collect 166 newly diagnosed RCC cases and 166 healthy individuals who underwent physical examinations during the same period, and detect genotype using iMLDR method. The results The rs1801157 locus (C:T) of the SDF-1α gene was not significantly associated with the pathohistological type, the rs1799782 locus (G:A) of the XRCC1 gene was associated with the pathohistological type of RCC, and there were interactions between rs1799782 and smoking, alcohol consumption, pesticide exposure, hair dye, and urine holding. The rs1799782 locus of the XRCC1 gene may be a key factor in the pathogenesis and pathological development of RCC. High SDF-1ɑ expression is a protective factor for the overall survival of patients with RCC, and SDF-1ɑ and XRCC1 may be important for the treatment of RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , DNA-Binding Proteins/genetics , Chemokine CXCL12/genetics , Genetic Predisposition to Disease , X-ray Repair Cross Complementing Protein 1/genetics , Kidney Neoplasms/genetics , Polymorphism, Single Nucleotide , Genotype , Prognosis , Computational Biology , Case-Control Studies
17.
BMC Med Genomics ; 17(1): 143, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789983

ABSTRACT

BACKGROUND: Therapy with anti-cancer drugs remain the cornerstone of treating cancer. The effectiveness and safety of anti-cancer drugs vary significantly among individuals due to genetic factors influencing the drug response and metabolism. Data on the pharmacogenomic variations in Sri Lankans related to anti-cancer therapy is sparse. As current treatment guidelines in Sri Lanka often do not consider local pharmacogenomic variants, this study aimed to explore the diversity of pharmacogenomic variants in the Sri Lankan population to pave the way for personalized treatment approaches and improve patient outcomes. METHODS: Pharmacogenomic data regarding variant-drug pairs of genes CYP2D6, DPYD, NUDT15, EPAS1, and XRCC1 with clinical annotations labelled as evidence levels 1A-2B were obtained from the Pharmacogenomics Knowledgebase database. Their frequencies in Sri Lankans were obtained from an anonymized database that was derived from 541 Sri Lankans who underwent exome sequencing at the Human Genetics Unit, Faculty of Medicine, University of Colombo. Variations in DPYD, NUDT15, and EPAS1 genes are related to increased toxicity to fluoropyrimidines, mercaptopurines, and sorafenib respectively. Variations in CYP2D6 and XRCC1 genes are related to changes in efficacy of tamoxifen and platinum compounds, respectively. Minor allele frequencies of these variants were calculated and compared with other populations. RESULTS: MAFs of rs1065852 c.100 C > T (CYP2D6), rs3918290 c.1905 + 1G > A (DPYD), rs56038477 c.1236G > A (DPYD), rs7557402 c.1035-7 C > G (EPAS1), rs116855232 c.415 C > T (NUDT15*3), and rs25487 c.1196 A > G (XRCC1) were: 12.9% [95%CI:10.9-14.9], 1.5% [95%CI:0.8-2.2], 1.2% [95%CI:0.5-1.8], 37.7% [95%CI:34.8-40.6], 8.3% [95%CI:6.7-10.0], and 64.0% [95%CI:61.1-66.8], respectively. Frequencies of rs1065852 c.100 C > T (CYP2D6), rs7557402 c.1035-7 C > G (EPAS1), and rs25487 (XRCC1) were significantly lower in Sri Lankans, while frequencies of rs116855232 c.415 C > T (NUDT15*3) and rs56038477 c.1236G > A (DPYD) were significantly higher in Sri Lankans when compared to some Western and Asian populations. CONCLUSION: Sri Lankans are likely to show lower toxicity risk with sorafenib (rs7557402 c.84,131 C > G) and, higher toxicity risk with fluoropyrimidines (rs56038477 c.1236G > A) and mercaptopurine (rs116855232 c.415 C > T), and reduced effectiveness with tamoxifen (rs1065852 c.100 C > T) and platinum compounds (rs25487). These findings highlight the potential contribution of these genetic variations to the individual variability in anti-cancer dosage requirements among Sri Lankans.


Subject(s)
Antineoplastic Agents , Pharmacogenomic Variants , Humans , Sri Lanka , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , X-ray Repair Cross Complementing Protein 1/genetics , Pyrophosphatases/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cytochrome P-450 CYP2D6/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Asian People/genetics , Pharmacogenetics , Gene Frequency , Nudix Hydrolases
18.
Cell Metab ; 36(8): 1637-1639, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111282

ABSTRACT

In this issue of Cell Metabolism, Li et al. report that the highly expressed aldehyde dehydrogenase 1 family member A3 interacts with pyruvate kinase M2 (PKM2) in glioblastoma cells. Consequently, PKM2 tetramerization and activation promote lactate production, leading to the lactylation and nuclear translocation of XRCC1 for DNA damage repair and therapeutic resistance.


Subject(s)
DNA Damage , DNA Repair , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Warburg Effect, Oncologic , DNA-Binding Proteins/metabolism , X-ray Repair Cross Complementing Protein 1/metabolism , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics
19.
Cell Death Dis ; 15(8): 610, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174499

ABSTRACT

PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.


Subject(s)
Cell Cycle Proteins , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Damage , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , DNA Repair/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Etoposide/pharmacology , X-ray Repair Cross Complementing Protein 1
20.
J Pharm Pharmacol ; 76(4): 354-367, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38330446

ABSTRACT

OBJECTIVES: Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells. METHODS: After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A. RESULTS: GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy. CONCLUSION: GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.


Subject(s)
Antineoplastic Agents , Autophagy , Carcinoma, Non-Small-Cell Lung , Heptanoic Acids , Lanosterol , Lung Neoplasms , MicroRNAs , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cytochrome P-450 CYP1A1/drug effects , Cytochrome P-450 CYP1A1/metabolism , Drug Resistance, Neoplasm , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/drug effects , MicroRNAs/metabolism , RNA, Circular/drug effects , RNA, Circular/metabolism , X-ray Repair Cross Complementing Protein 1/drug effects , X-ray Repair Cross Complementing Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL