RESUMEN
The metabolism of lufotrelvir, a novel phosphate prodrug of PF-00835231 for the treatment of COVID-19, was evaluated in healthy human volunteers and clinical trial participants with COVID-19 following intravenous infusion. The prodrug was completely converted to PF-00835231 that was subsequently cleared by hydrolysis, hydroxylation, ketoreduction, epimerization, renal clearance, and secretion into the feces. The main circulating metabolite was a hydrolysis product (M7) that was present at concentrations greater than PF-00835231, and this was consistent between healthy volunteers and participants with COVID-19. On administration of [14C]lufotrelvir, only 63% of the dose was obtained in excreta over 10 days and total drug-related material demonstrated a prolonged terminal phase half-life in plasma. A considerable portion of the labeled material was unextractable from fecal homogenate and plasma. The position of the carbon-14 atom in the labeled material was at a leucine carbonyl, and pronase digestion of the pellet derived from extraction of the fecal homogenate showed that [14C]leucine was released. SIGNIFICANCE STATEMENT: Lufotrelvir is an experimental phosphate prodrug intravenous therapy investigated for the potential treatment of COVID-19 in a hospital setting. The overall metabolism of lufotrelvir was determined in human healthy volunteers and clinical trial participants with COVID-19. Conversion of the phosphate prodrug to the active drug PF-00835231 was complete and the subsequent metabolic clearance of the active drug was largely via amide bond hydrolysis. Substantial drug-related material was not recovered due to loss of the carbon-14 label to endogenous metabolism.
Asunto(s)
COVID-19 , Profármacos , Humanos , Radioisótopos de Carbono/análisis , Infusiones Intravenosas , ARN Viral/análisis , Leucina , SARS-CoV-2 , Administración Intravenosa , Fosfatos , Heces/químicaRESUMEN
Microbial infections affect both the human population and animals. The appearance of more and more microbial strains resistant to classical treatments led to the need to develop new treatments. Allium plants are known for their antimicrobial properties due to their high content of thiosulfinates, especially allicin, polyphenols or flavonoids. The hydroalcoholic extracts of six Allium species obtained by cold percolation were analyzed regarding their phytochemical compounds and antimicrobial activity. Among the six extracts, Allium sativum L. and Allium ursinum L. have similar contents of thiosulfinates (approx. 300 µg allicin equivalents/g), and the contents of polyphenols and flavonoids were different between the tested species. The HPLC-DAD method was used to detail the phytochemical composition of species rich in thiosulfinates. A. sativum is richer in allicin (280 µg/g) than A. ursinum (130 µg/g). The antimicrobial activity of A. sativum and A. ursinum extracts against Escherichia coli, Staphylococcus aureus, Candida albicans and Candida parapsilosis can be correlated with the presence of large amounts of thiosulfinates. Both extracts have shown results against Candida species (inhibition zones of 20-35 mm) and against Gram-positive bacteria, Staphylococcus aureus (inhibition zones of 15-25 mm). These results demonstrate the antimicrobial effect of the extracts and suggest their use as an adjuvant treatment for microbial infections.
Asunto(s)
Allium , Antiinfecciosos , Ajo , Animales , Humanos , Allium/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ajo/química , Staphylococcus aureus , Polifenoles/farmacología , Fitoquímicos/farmacología , Flavonoides/farmacologíaRESUMEN
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, ß-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein-curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Asunto(s)
Antineoplásicos , Curcumina , Curcumina/farmacología , Curcumina/química , Disponibilidad Biológica , Antioxidantes/farmacología , Antioxidantes/química , Resveratrol , Albúmina Sérica Bovina , Proteína de Suero de Leche , Quercetina , Antifúngicos , Antineoplásicos/farmacología , Lactoglobulinas/química , Lípidos , Antivirales , Carbohidratos , AntibacterianosRESUMEN
Prokaryotes mostly lack membranous compartments that are typical of eukaryotic cells, but instead, they have various protein-based organelles. These include bacterial microcompartments like the carboxysome and the virus-like nanocompartment encapsulin. Encapsulins have an adaptable mechanism for enzyme packaging, which makes it an attractive platform to carry a foreign protein cargo. Here we investigate the assembly pathways and mechanical properties of the cargo-free and cargo-loaded nanocompartments, using a combination of native mass spectrometry, atomic force microscopy and multiscale computational molecular modeling. We show that encapsulin dimers assemble into rigid single-enzyme bacterial containers. Moreover, we demonstrate that cargo encapsulation has a mechanical impact on the shell. The structural similarity of encapsulins to virus capsids is reflected in their mechanical properties. With these robust mechanical properties encapsulins provide a suitable platform for the development of nanotechnological applications.
Asunto(s)
Proteínas Bacterianas/química , Brevibacterium , Nanotecnología , Orgánulos/metabolismo , Modelos Moleculares , Multimerización de ProteínaRESUMEN
The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy, and small angle x-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA. Recently, a cryo-electron microscopy structure of Cascade revealed that the CRISPR RNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Secuencias Invertidas Repetidas/genética , Complejos Multiproteicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometría de Masas en Tándem/métodos , Escherichia coli/genética , Modelos Moleculares , Complejos Multiproteicos/química , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Pseudomonas aeruginosa/genéticaRESUMEN
Medicinal plants are a valuable reservoir of novel pharmacologically active compounds. ROS and free radicals are primary contributors to oxidative stress, a condition associated with the onset of degenerative diseases such as cancer, coronary heart disease, and vascular disease. In this study, we used different spectrophotometry methods to demonstrate the antioxidant properties of 6 Allium extracts: Allium fistulosum; Allium ursinum; Allium cepa: ArieÈ red cultivar of A. cepa, and white variety of A. cepa; Allium sativum; and Allium senescens subsp. montanum. HPLC-MS determined the chemical composition of the extracts. Among the tested extracts, the ArieÈ red cultivar of A. cepa stands out as having the best antioxidant activity, probably due to the high content of polyphenols and alliin (12.67 µg/mL and 3565 ng/mL, respectively). The results obtained in this study show that Allium extracts have antioxidant activity, but also free radical scavenging capabilities. Also, their interactions with cytochrome c and hemoglobin can be the basis of future studies to create treatments for oxidative stress-related diseases.
RESUMEN
Expression of the protruding (P) domain of the norovirus capsid protein, in vitro, results in the formation of P dimers and larger oligomers, 12-mer and 24-mer P particles. All these P complexes retain the authentic antigenicity and carbohydrate-binding function of the norovirus capsid. They have been used as tools to study norovirus-host interactions, and the 24-mer P particle has been proposed as a vaccine and vaccine platform against norovirus and other pathogens. In view of their pharmaceutical interest it is important to characterise the structure, stability and dynamics of these protein complexes. Here we use a native mass spectrometric approach. We analyse the P particles under both non-reducing and reducing conditions, as it is known that the macromolecular assemblies are stabilised by inter-subunit disulphide bonding. A novel 18-mer complex is identified, and we show that under reducing conditions the 24-mer dissociates into P dimers that reassemble into the 12-mer small P particle and another novel 36-mer complex. The collisional cross-sections of the 12-mer and 24-mer P particles determined by ion mobility MS are in good agreement with theoretical predictions and electron microscopy data. We propose a model structure for the 18-mer based on ion mobility experiments. Our results demonstrate the interchangeable nature and dynamic relationship of all P domain complexes and confirm their binding activity to the host receptors - human histo blood group antigens (HBGAs). These findings, together with the identification of the 18-mer and 36-mer P complexes add new information to the intriguing interactions of the norovirus P domain.
Asunto(s)
Proteínas de la Cápside/química , Norovirus/fisiología , Antígenos de Grupos Sanguíneos/química , Ditiotreitol/química , Interacciones Huésped-Patógeno , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Complejos Multiproteicos/química , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Sustancias Reductoras/química , Saliva/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en TándemRESUMEN
In the view of a circular economy, there is an increasing need for (re-)using animal by-products that have a wide range of applications and sufficient safety. Hydrolysates of animal proteins (HPs) are frequently used as feed ingredients. Nevertheless, clear criteria for legal use and methods for monitoring feed applications are not available. Here, a range of methods have been used and evaluated for characterizing a set of 26 samples of hydrolysed proteins, 'hydrolysed' feather meals and processed animal proteins (PAPs), with verification based on an additional set of eight samples. Methods included determination of ash content, sediment (mineral fraction) content, protein content, species identity, solubility, protein solubility, size exclusion chromatography and polyacrylamide gel electrophoresis (SDS-PAGE). After a comparison of results obtained with water and SDS, water was chosen as the solvent for environmental and occupational reasons. Typical HP samples have a protein content higher than 60%, a solubility exceeding 50% and a virtual absence of a mineral fraction. The first discrimination between HPs and PAPs could be based on the absence or presence, respectively, of a mineral fraction. An approach for HP characterization is designed using a Hydrolysation Index (HI) based on the fraction of peptides smaller than 10 kDa, the solubility of the sample and the fraction of soluble proteins. A simplified version (HIs), exclusively based on the fraction of peptides smaller than 10 kDa and the solubility of the sample, shows a trend among the samples highly comparable to HI. Values for HI and HIs exceeding 60% would characterise HPs. Feather meals, which are heat treated instead of treatment by a chemical process of hydrolysation, range among the PAPs and should not be indicated as "hydrolysed." The HIs can be used as an easy parameter for classifying HPs and for legal enforcement.
Asunto(s)
Péptidos , Proteínas , Alimentación Animal/análisis , Animales , Minerales/análisis , Péptidos/análisis , Proteínas/análisis , Solventes , AguaRESUMEN
In the gas-phase, ions of protein complexes typically follow an asymmetric dissociation pathway upon collisional activation, whereby an expelled small monomer takes a disproportionately large amount of the charges from the precursor ion. This phenomenon has been rationalized by assuming that upon activation, a single monomer becomes unfolded, thereby attracting charges to its newly exposed basic residues. Here, we report on the atypical gas-phase dissociation of the therapeutically important, heterodimeric calcium/calmodulin-dependent serine/threonine phosphatase calcineurin, using a combination of tandem mass spectrometry, ion mobility mass spectrometry, and computational modeling. Therefore, a hetero-dimeric calcineurin construct (62 kDa), composed of CNa (44 kDa, a truncation mutant missing the calmodulin binding and auto-inhibitory domains), and CNb (18 kDa), was used. Upon collisional activation, this hetero-dimer follows the commonly observed dissociation behavior, whereby the smaller CNb becomes highly charged and is expelled. Surprisingly, in addition, a second atypical dissociation pathway, whereby the charge partitioning over the two entities is more symmetric is observed. The presence of two gas-phase conformational isomers of calcineurin as revealed by ion mobility mass spectrometry (IM-MS) may explain the co-occurrence of these two dissociation pathways. We reveal the direct relationship between the conformation of the calcineurin precursor ion and its concomitant dissociation pathway and provide insights into the mechanisms underlying this co-occurrence of the typical and atypical fragmentation mechanisms.
Asunto(s)
Calcineurina/química , Calcineurina/metabolismo , Calcio/química , Calcio/metabolismo , Simulación por Computador , Humanos , Isomerismo , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína , Desplegamiento Proteico , Espectrometría de Masas en TándemRESUMEN
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.