RESUMEN
Melanoma is the most aggressive and deadly skin cancer. The difficulty in its treatment arises from its ability to suppress the immune system, making it crucial to find a substance that increases anti-tumor immunity. C-phycocyanin (C-PC) appears as a promising bioactive, with multifaceted effects against several cancers, but its efficacy against melanoma has only been tested in vitro. Therefore, we investigated C-PC's the anti-tumor and immunomodulatory action in a murine melanoma model. The tumor was subcutaneously induced in C57BL/6 mice by injecting B16F10 cells. The animals were injected subcutaneously with C-PC for three consecutive days. After euthanasia, the tumor was weighed and measured. The inguinal lymph node was removed, and the cells were stained with antibodies and analyzed by flow cytometry. The heart, brain and lung were analyzed by histopathology. C-PC increased the B cell population of the inguinal lymph node in percentage and absolute number. The absolute number of T lymphocytes and myeloid cells were also increased in the groups treated with C-PC. Thus, C-PC showed a positive immunomodulatory effect both animals with and without tumor. However, this effect was more pronounced in the presence of the tumor. Positive immune system modulation may be associated with a reduction in tumor growth in animals treated with C-PC. Administration of C-PC subcutaneously did not cause organ damage. Our findings demonstrate C-PC's immunomodulatory and anti-melanoma action, paving the way for clinical research with this bioactive.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Ficocianina/farmacología , Ficocianina/uso terapéutico , Ratones Endogámicos C57BL , Neoplasias Cutáneas/tratamiento farmacológico , InmunomodulaciónRESUMEN
This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.
Asunto(s)
Chenopodium quinoa , Kéfir , Lactobacillales , Kéfir/análisis , Kéfir/microbiología , Verduras , Levaduras , Extractos Vegetales , FermentaciónRESUMEN
Spirulina consists of a cluster of green-colored cyanobacteria; it is commonly consumed as a food or food supplement rich in bioactive compounds with antioxidant activity, predominantly C-phycocyanin (C-PC), which is related to anti-inflammatory action and anticancer potential when consumed frequently. After C-PC extraction, the Spirulina residual biomass (RB) is rich in proteins and fatty acids with the potential for developing food products, which is interesting from the circular economy perspective. The present work aimed to develop a vegan oil-in-water emulsion containing different contents of Spirulina RB, obtaining a product aligned with current food trends. Emulsions with 3.0% (w/w) of proteins were prepared with different chickpea and Spirulina RB ratios. Emulsifying properties were evaluated regarding texture and rheological properties, color, antioxidant activity, and droplet size distribution. The results showed that it was possible to formulate stable protein-rich emulsions using recovering matter rich in protein from Spirulina as an innovative food ingredient. All the concentrations used of the RB promoted the formulation of emulsions presenting interesting rheological parameters compared with a more traditional protein source such as chickpea. The emulsions were also a source of antioxidant compounds and maintained the color for at least 30 days after production.
Asunto(s)
Antioxidantes , Spirulina , Animales , Antioxidantes/farmacología , Biomasa , Decapodiformes , Suplementos Dietéticos , EmulsionesRESUMEN
Currently, on an industrial scale, synthetic colorants are used in many fields, as well as those extracted with conventional organic solvents (COSs), leading to several environmental issues. Therefore, we developed a sustainable extraction and purification method mediated by ionic liquids (IL), which is considered an alternative high-performance replacement for COSs. Carotenoids are natural pigments with low bioaccessibility (BCT) and bioavailability (BV) but with huge importance to health. To investigate if the BCT and cellular uptake of the carotenoids are modified by the extraction method, we conducted a comparison assay between both extraction procedures (IL vs. COS). For this, we used the Amazonian fruit Bactris gasipaes, a rich source of pro-vitamin A carotenoids, to obtain the extract, which was emulsified and subjected to an in vitro digestion model followed by the Caco-2 cell absorption assay. The bioaccessibility of carotenoids using IL was better than those using COS (33.25%, and 26.84%, respectively). The cellular uptake of the carotenoids extracted with IL was 1.4-fold higher than those extracted using COS. Thus, IL may be a feasible alternative as extraction solvent in the food industry, replacing COS, since, in this study, no IL was present in the final extract.
Asunto(s)
Arecaceae/química , Carotenoides , Frutas/química , Líquidos Iónicos/química , Extractos Vegetales/química , Disponibilidad Biológica , Células CACO-2 , Carotenoides/química , Carotenoides/aislamiento & purificación , Carotenoides/farmacocinética , Carotenoides/farmacología , HumanosRESUMEN
Jussara pulp (Euterpe edulis Mart.) is rich in bioactive compounds known to be protective mediators against several diseases. In this context, nevertheless, anthocyanins, the most abundant natural pigment in jussara, are sensitive to temperature, pH, oxygen, and light conditions, leading to instability during food storage or digestion, and, thus jeopardizing the antioxidant proprieties retained by these flavonoids and limiting industrial application of the pulp. The production of nanostructures, from synthetic and natural polymers, containing natural matrices rich in bioactive compounds, has been widely studied, providing satisfactory results in the conservation and maintenance of the stability of these compounds. The current work aimed to compare uniaxial and coaxial electrospinning operation modes to produce core-shell jussara pulp nanofibers (NFs). Additionally, the parameters employed in the electrospinning processes were optimize using response surface methodology in an attempt to solve stability issues for the bioactive compounds. The best experimental conditions provided NFs with diameters ranging between 110.0 ± 47 and 121.1 ± 54 nm. Moreover, the coaxial setup improved jussara pulp NF formation, while further allowing greater integrity of NFs structures.
Asunto(s)
Antioxidantes/química , Materiales Biocompatibles/química , Euterpe/química , Nanofibras/química , Brasil , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
In this article, we reviewed studies on the fruits of the jussara palm (Euterpe edulis Martius), an endangered Brazilian Atlantic Forest palm tree, also coined as "Superfruit." We summarized the chemical components of the pulp and observed biological activities in murine and humans, as well as the best practices involving the extraction of its target compounds, bioavailability, and stability of extracts. Jussara has shown a rich phenolic profile that justifies its antioxidant properties, in addition to a considerable lipidic and energetic value. As the main feature, the fruit possesses large amounts of anthocyanins that can be commercially explored as a food additive or cosmetic colorants. Recent studies emphasized jussara's antioxidant, anti-inflammatory, and cardioprotective capabilities via reshaping of the gut microbiota. Further knowledge is needed to establish bioavailability and optimal serving size, as many of its antioxidant compounds go under chemical bioconversion in the intestinal tract. While extraction of phenolic compounds, anthocyanins, and oils have interesting results, more studies are required in order to reduce the use of conventional organic solvents and improve their stability and shelf life when added to food products, an area in which nanotechnology seems promising.
Asunto(s)
Euterpe , Animales , Antocianinas/farmacología , Antioxidantes/farmacología , Frutas , Humanos , Ratones , Fenoles/farmacologíaRESUMEN
The aim of this study was to review prior studies that have evaluated the effects of cooking techniques on polyphenol levels and antioxidant activity in vegetables and to release a meta-analysis of the findings. Meta-analysis with a random effect model was conducted using the weighted response ratios (R*) that were calculated for each experiment. Baking (R* = 0.51), blanching (R* = 0.94), boiling (R* = 0.62), microwaving (R* = 0.54) and pressure cooking (R* = 0.47) techniques precipitated significant reductions in the polyphenol levels. Significant decreases in the antioxidant activity levels were noted after baking (R* = 0.45) and boiling (R* = 0.76), while significant increases were observed after frying (R* = 2.26) and steaming (R* = 1.52).
Asunto(s)
Antioxidantes/química , Culinaria , Fenoles/química , Polifenoles/química , Verduras/química , Antioxidantes/análisis , Humanos , Valor Nutritivo , Fenoles/análisis , Polifenoles/análisis , Reproducibilidad de los ResultadosRESUMEN
Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries.
Asunto(s)
Péptidos/química , Péptidos/aislamiento & purificación , Proteínas/química , Residuos , Agricultura , Industrias , Nanotecnología , Péptidos/farmacologíaRESUMEN
The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into food formulations. Nevertheless, the efficacy of these bioactive compounds in product development encounters numerous challenges during various processing and storage stages due to their inherent instability. Addressing these limitations necessitates exploring novel technological approaches tailored explicitly to the application of bioactive compounds in food production. These approaches should not only focus on preserving the bioactive compounds within food matrices but also on retaining the sensory attributes (color, taste, and aroma) of the final food products. The impact of microalgae and their bioactive compounds on human health and well-being has been extensively reported in the literature. However, there is still a gap regarding the processing and stability of microalgal bioactive compounds to improve their application in the food industry. The main goal of the present work is to point out how to overcome technological challenges in enhancing the stability of bioactive compounds from microalgae for optimal food applications.
RESUMEN
This study aims to evaluate the feasibility of producing electrospun fibers by combining polysaccharides, zein, and poly(ethylene oxide) (PEO) to simulate the fibers applied in plant-based meat analogs. The rheological properties of biopolymer solutions were evaluated, and the electrospun fibers were characterized according to their morphology, structural interactions, and thermal analysis. The results indicated that the fibers prepared in a ratio of 90:10 of zein/carrageenan from the mixture of a solution containing 23 wt.% of zein with a solution containing 1 wt.% of carrageenan and with the addition of 1 wt.% of PEO presented a promising structure for application as fibers in meat analogs because they have a more hydrophilic surface. Thus, they have good moisture retention. In addition, they have good thermal stability at high temperatures, which is crucial to achieve a consistent and pleasant texture. Furthermore, it was observed that adding zein and PEO helps with the spinnability of the polysaccharides, producing fibers with good homogeneity.
RESUMEN
Anthocyanins extracted with deep eutectic solvent (NADES) (chlorine-chloride: xylitol, 5:2) were used to produce polyethylene oxide (PEO) composites through electrospinning technique, analyzing their microscopic and physical characteristics. The coated anthocyanins were then subjected to in vitro gastrointestinal digestion to evaluate their bioaccessibility compared to lyophilized jussara pulp. The remaining total anthocyanin content (TAC) after intestinal in vitro digestion did not change significantly among the assessed samples, and both showed around 30% recovery. The TAC recovery after the gastric phase, on the other hand, showed a major difference (70.84% vs. 48.13%), revealing that the composites fabricated by the electrospinning technique can significantly maintain anthocyanins NADES-extracted stability during the gastric phase of digestion, potentially allowing better absorption trough stomach wall. The results can be considered a first step to applying anthocyanins-encapsulated in foodstuff as a natural pigment.
Asunto(s)
Antocianinas , Disolventes Eutécticos Profundos , Polietilenglicoles , Extractos Vegetales , SolventesRESUMEN
BACKGROUND: This study compares Fascia Iliaca compartment (FI) block and Pericapsular Nerve Group (PENG) block for hip surgery. METHODS: Pubmed, Embase and Cochrane were systematically searched in April 2022. Inclusion criteria were: Randomized Controlled Trials (RCTs); comparing PENG block versus FI block for hip surgery; patients over 18 years of age; and reporting outcomes immediately postoperative. We excluded studies with overlapped populations and without a head-to-head comparison of the PENG block vs. FI block. Mean-Difference (MD) with 95% Confidence Intervals (CI) were pooled. Trial Sequential Analyses (TSA) were performed to assess inconsistency. Quality assessment and risk of bias were performed according to Cochrane recommendations. RESULTS: Eight RCTs comprising 384 patients were included, of whom 196 (51%) underwent PENG block. After hip surgery, PENG block reduced static pain score at 12h post-surgery (MD = 0.61 mm; 95% CI 1.12 to -0.09; p = 0.02) and cumulative postoperative oral morphine consumption in the first 24h (MD = -6.93 mg; 95% CI -13.60 to -0.25; p = 0.04) compared with the FI group. However, no differences were found between the two techniques regarding dynamic and static pain scores at 6 h or 24 h post-surgery, or in the time to the first analgesic rescue after surgery. CONCLUSION: The findings suggest that PENG block reduced opioid consumption in the first 24 h after surgery and reduced pain scores at rest at 12 h post-surgery. Further research is needed to fully understand the effects of the PENG block and its potential benefits compared to FI block. PROSPERO REGISTRATION: CRD42022339628 PROSPERO REGISTRATION: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=339628.
Asunto(s)
Nervio Femoral , Bloqueo Nervioso , Humanos , Adolescente , Adulto , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Bloqueo Nervioso/métodos , Fascia/inervaciónRESUMEN
Color is a crucial sensory attribute that guides consumer expectations. A high-performance pequi carotenoid extraction process was developed using ionic liquid-based ethanolic solutions and a factorial design strategy to search for a potential substitute for the artificial azo dye yellow tartrazine. All-trans-antheraxanthin was identified with HPLC-PAD-MSn for the first time in pequi samples. [BMIM][BF4] was the most efficient ionic liquid, and the maximization process condition was the solid-liquid ratio R(S/L) of 1:3, the co-solvent ratio R(IL/E) of 1:1 ([BMIM][BF4]: ethanol), and three cycles of extraction with 300 s each and yielded 107.90 µg carotenoids/g of dry matter. The ionic liquid-ethanolic solution recyclability was accomplished by freezing and precipitating with an average recovery of 79 %. In CIELAB parameters, pequi carotenoid extracted with [BMIM][BF4] was brighter and yellower than the artificial azo dye yellow tartrazine. A color change of 11.08 and a hue* difference of 1.26° were obtained. Furthermore, carotenoids extracted with [BMIM][BF4] showed antioxidant activity of 35.84 µmol of α-tocopherol. These findings suggest the potential of employing the pequi carotenoids to replace the artificial azo dye yellow tartrazine in foods for improved functional properties.
Asunto(s)
Líquidos Iónicos , Tartrazina , Compuestos Azo , Carotenoides , AntioxidantesRESUMEN
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
Asunto(s)
Durapatita , Ingeniería de Tejidos , Animales , Durapatita/farmacología , Andamios del Tejido , Huesos , Impresión Tridimensional , Regeneración ÓseaRESUMEN
This study aimed at assessing the influence of different pressurized fluids treatment on the enzymatic activity and stability of a lyophilized ß-galactosidase. The effects of system pressure, exposure time and depressurization rate, using propane, n-butane, carbon dioxide and liquefied petroleum gas on the enzymatic activity were evaluated. The ß-galactosidase activity changed significantly depending on the experimental conditions investigated, allowing the selection of the proper compressed fluid for advantageous application of this biocatalyst in enzymatic reactions. The residual activity ranged from 32.1 to 93.8 % after treatment. The storage stability of the enzyme after high-pressure pre-treatment was also monitored, and results showed that the biocatalyst activity presents strong dependence of the fluid used in the pretreatment. The activity gradually decreases over the time for the enzyme treated with LGP and propane, while the enzyme treated with n-butane maintained 96 % of its initial activity until 120 days. For CO(2), there was a reduction of around 40 % in the initial activity 90 days of storage. The enzyme treated with n-butane also showed a better thermostability in terms of enzymatic half-life.
Asunto(s)
Proteínas Fúngicas/química , Kluyveromyces/enzimología , Presión , beta-Galactosidasa/química , Butanos/química , Dióxido de Carbono/química , Estabilidad de Enzimas , Propano/químicaRESUMEN
Among the species of plants present in the Atlantic Forest, the jussara (Euterpe edulis Mart.) stands out for the contents of bioactive compounds present in its composition. Fermentation processes can be essential in converting bioproducts and bioactive compounds, improving their biological properties. In addition, the improvement of procedures for the maintenance of the features of bioactive compounds has been a research focus in recent years, and the nanotechnology features that can potentially solve this issue have been highlighted among the most reviewed paths. The present work focused on tailoring nanostructures applying polyethylene oxide, assembling fermented jussara pulp nanofibers, and assessing their characteristics. The results revealed the formation of fermented jussara nanofibers with a diameter of 101.2 ± 26.2 nm. Also, the obtained results allow us to state that it is possible to maintain or even increase the antioxidant activity of anthocyanins and their metabolites after fermentation processes.
RESUMEN
Propolis is a resinous material rich in flavonoids and involved in several biological activities such as antimicrobial, fungicide, and antiparasitic functions. Conventionally, ethanolic solutions are used to obtain propolis phytochemicals, which restrict their use in some cultures. Given this, we developed an alcohol-free high-performance extractive approach to recover antibacterial and antioxidants phytochemicals from red propolis. Thus, aqueous-solutions of ionic liquids (IL) and eutectic solvents were used and then tested for their total flavonoids, antioxidant, and antimicrobial activities. The surface-responsive technique was applied regarding some variables, namely, the time of extraction, the number of extractions, and cavitation power (W), to optimize the process (in terms of higher yields of flavonoids and better antioxidant activity). After that, four extractions with the same biomass (repetitions) using 1-hexyl-3-methylimidazolium chloride [C6mim]Cl, under the operational conditions fixed at 3.3 min and 300 W, were able to recover 394.39 ± 36.30 mg RuE. g-1 of total flavonoids, with total antioxidant capacity evaluated up to 7595.77 ± 5.48 µmol TE. g-1 dried biomass, besides inhibiting the growth of Staphylococcus aureus and Salmonella enteritidis bacteria (inhibition halo of 23.0 ± 1.0 and 15.7 ± 2.1, respectively). Aiming at the development of new technologies, the antimicrobial effect also presented by [C6mim]Cl may be appealing, and future studies are required to understand possible synergistic actions with propolis phytochemicals. Thereby, we successfully applied a completely alcohol-free method to obtain antimicrobials phytochemicals and highly antioxidants from red propolis, representing an optimized process to replace the conventional extracts produced until now.
RESUMEN
Psyllium husk powder was investigated for its ability to improve the quality and shelf life of gluten-free bread. Gluten-free bread formulations containing 2.86%, 7.14%, and 17.14% psyllium by flour weight basis were compared to the control gluten-free bread and wheat bread in terms of performance. The effect of time on crumb moisture and firmness, microbial safety, and sensory acceptability using a 10-cm scale was assessed at 0, 24, 48, and 72 h postproduction. Crumb firming was observed during the storage time, especially for the control gluten-free bread, which had a crumb firmness 8-fold higher than that of the wheat bread. Psyllium addition decreased the crumb firmness values by 65-75% compared to those of the control gluten-free bread during 72 h of storage. The longest delay in bread staling was observed with a 17.14% psyllium addition. The psyllium-enriched gluten-free bread was well accepted during 72 h of storage, and the acceptability scores for aroma, texture, and flavor ranged from 6.8 to 8.3, which resembled those of wheat bread. The results showed that the addition of 17.14% psyllium to the formulation improved the structure, appearance, texture, and acceptability of gluten-free bread and delayed bread staling, resembling physical and sensory properties of wheat bread samples during 72 h of storage. Therefore, according to the obtained results, this approach seems to be promising to overcome some of the limitations of gluten-free breadmaking.
RESUMEN
Among the bioactive compounds that are considered important for the food industry, anthocyanins, which are flavonoid compounds presenting antioxidant activity and are responsible for beneficial health effects, have received researchers' attention in the last decades. In addition, anthocyanins are highly reactive and can be used as indicators of foodstuff quality conditions, particularly as a packaging ingredient. Considering this line of work, the eco-friendly film is a novel packaging technology that arose from the concern to reduce non-renewable resources and their impact on the environment. These films can be vehicles for loading bioactive compounds such as anthocyanins. Among the contribution of films in the food industry, we can highlight several potential applications: i) smart film: assess food quality and safety, transmitting food information to consumers and increasing the reliability of their consumption without breaking the packaging; ii) active film: use to preserve food quality through the release of active agents; and iii) bioactive film: carry substances in desired concentrations until their controlled or rapid diffusion within the gastrointestinal tract so that they can promote its benefit to human health. Thus, this review presents anthocyanin extract's potential as a powerful tool to improve the development of eco-friendly films, directing its purpose to the application as smart, active, and bioactive films.
Asunto(s)
Antocianinas , Polímeros , Antioxidantes , Embalaje de Alimentos , Humanos , Reproducibilidad de los ResultadosRESUMEN
Native extracts from orange peels were obtained by a conventional method using acetone and, an alternative method using ionic liquid (1-butyl-3-methylimidazolium chloride ([C4mim]Cl)). The bioaccessibilities and cellular uptakes of carotenoids, esters and chlorophylls were evaluated, since the influence of esterification on bioaccessibility and bioavailability is not well established. For this, the extracts were emulsified, submitted to in vitro simulated digestion model according to the INFOGEST protocol, followed by uptake by Caco-2 cells. Compounds were separated, identified and quantified by HPLC-PDA-MS/MS. After digestion, 22.0% and 26.2% of the total carotenoids and 45.9% and 68.7% of the chlorophylls were bioaccessible from the acetone and [C4mim]Cl extracts, respectively. The bioaccessibilities of xanthophylls and carotenes were significantly higher than those of the mono- and diesters. The uptake by Caco-2 cells varied from 130.2 to 131.9 ng/mg cell protein for total carotenoids and from 243.8 to 234.2 ng/mg cell protein for chlorophylls in the acetone and [C4mim]Cl extracts, respectively. In general, xanthophylls and esters were better absorbed than carotenes.