Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2210532119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409902

RESUMEN

A hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, or c9ALS/FTD. The RNA transcribed from the expansion, r(G4C2)exp, causes various pathologies, including intron retention, aberrant translation that produces toxic dipeptide repeat proteins (DPRs), and sequestration of RNA-binding proteins (RBPs) in RNA foci. Here, we describe a small molecule that potently and selectively interacts with r(G4C2)exp and mitigates disease pathologies in spinal neurons differentiated from c9ALS patient-derived induced pluripotent stem cells (iPSCs) and in two c9ALS/FTD mouse models. These studies reveal a mode of action whereby a small molecule diminishes intron retention caused by the r(G4C2)exp and allows the liberated intron to be eliminated by the nuclear RNA exosome, a multi-subunit degradation complex. Our findings highlight the complexity of mechanisms available to RNA-binding small molecules to alleviate disease pathologies and establishes a pipeline for the design of brain penetrant small molecules targeting RNA with novel modes of action in vivo.


Asunto(s)
Exosomas , Demencia Frontotemporal , Animales , Ratones , Demencia Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , ARN/genética , Exosomas/metabolismo , Barrera Hematoencefálica/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Nuclear
2.
J Am Chem Soc ; 144(48): 21972-21979, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399603

RESUMEN

A solid-phase DNA-encoded library (DEL) was studied for binding the RNA repeat expansion r(CUG)exp, the causative agent of the most common form of adult-onset muscular dystrophy, myotonic dystrophy type 1 (DM1). A variety of uncharged and novel RNA binders were identified to selectively bind r(CUG)exp by using a two-color flow cytometry screen. The cellular activity of one binder was augmented by attaching it with a module that directly cleaves r(CUG)exp. In DM1 patient-derived muscle cells, the compound specifically bound r(CUG)exp and allele-specifically eliminated r(CUG)exp, improving disease-associated defects. The approaches herein can be used to identify and optimize ligands and bind RNA that can be further augmented for functionality including degradation.


Asunto(s)
ADN , Biblioteca de Genes , Distrofia Miotónica , Estabilidad del ARN , ARN , Expansión de Repetición de Trinucleótido , Humanos , ADN/química , ADN/genética , ARN/química , ARN/genética , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , Células Musculares
3.
ACS Cent Sci ; 9(7): 1342-1353, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37521782

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by a highly structured RNA repeat expansion, r(CUG)exp, harbored in the 3' untranslated region (3' UTR) of dystrophia myotonica protein kinase (DMPK) mRNA and drives disease through a gain-of-function mechanism. A panel of low-molecular-weight fragments capable of reacting with RNA upon UV irradiation was studied for cross-linking to r(CUG)expin vitro, affording perimidin-2-amine diazirine (1) that bound to r(CUG)exp. The interactions between the small molecule and RNA were further studied by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. Binding of 1 in DM1 myotubes was profiled transcriptome-wide, identifying 12 transcripts including DMPK that were bound by 1. Augmenting the functionality of 1 with cleaving capability created a chimeric degrader that specifically targets r(CUG)exp for elimination. The degrader broadly improved DM1-associated defects as assessed by RNA-seq, while having limited effects on healthy myotubes. This study (i) provides a platform to investigate molecular recognition of ligands directly in disease-affected cells; (ii) illustrates that RNA degraders can be more specific than the binders from which they are derived; and (iii) suggests that repeating transcripts can be selectively degraded due to the presence of multiple ligand binding sites.

4.
ACS Chem Biol ; 16(7): 1111-1127, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34166593

RESUMEN

The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.


Asunto(s)
Compuestos Orgánicos/farmacología , ARN/metabolismo , Animales , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Empalme del ARN/efectos de los fármacos , Riboswitch/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
5.
ACS Chem Neurosci ; 12(21): 4076-4089, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677935

RESUMEN

The hexanucleotide repeat expansion GGGGCC [r(G4C2)exp] within intron 1 of C9orf72 causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(G4C2)exp RNA gain- and loss-of-function mechanisms. The r(G4C2)exp RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(G4C2)exp. Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(G4C2)exp hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Humanos , ARN/genética
6.
Sci Transl Med ; 13(617): eabd5991, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34705518

RESUMEN

The most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD) is an expanded G4C2 RNA repeat [r(G4C2)exp] in chromosome 9 open reading frame 72 (C9orf72), which elicits pathology through several mechanisms. Here, we developed and characterized a small molecule for targeted degradation of r(G4C2)exp. The compound was able to selectively bind r(G4C2)exp's structure and to assemble an endogenous nuclease onto the target, provoking removal of the transcript by native RNA quality control mechanisms. In c9ALS patient­derived spinal neurons, the compound selectively degraded the mutant C9orf72 allele with limited off-targets and reduced quantities of toxic dipeptide repeat proteins (DPRs) translated from r(G4C2)exp. In vivo work in a rodent model showed that abundance of both the mutant allele harboring the repeat expansion and DPRs were selectively reduced by this compound. These results demonstrate that targeted small-molecule degradation of r(G4C2)exp is a strategy for mitigating c9ALS/FTD-associated pathologies and studying disease-associated pathways in preclinical models.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Humanos , Ribonucleasas
7.
ACS Chem Biol ; 15(12): 3112-3123, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33196168

RESUMEN

Genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), collectively named c9ALS/FTD, are triggered by hexanucleotide GGGGCC repeat expansions [r(G4C2)exp] within the C9orf72 gene. In these diseases, neuronal loss occurs through an interplay of deleterious phenotypes, including r(G4C2)exp RNA gain-of-function mechanisms. Herein, we identified a benzimidazole derivative, CB096, that specifically binds to a repeating 1 × 1 GG internal loop structure, 5'CGG/3'GGC, that is formed when r(G4C2)exp folds. Structure-activity relationship (SAR) studies and molecular dynamics (MD) simulations were used to define the molecular interactions formed between CB096 and r(G4C2)exp that results in the rescue of disease-associated pathways. Overall, this study reveals a unique structural feature within r(G4C2)exp that can be exploited for the development of lead medicines and chemical probes.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , ARN/genética , Bibliotecas de Moléculas Pequeñas/química , Proteína C9orf72/genética , G-Cuádruplex , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA