Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 88(3): 1039-1054, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35526263

RESUMEN

PURPOSE: This study aimed to develop and demonstrate the in vivo feasibility of a 3D stack-of-spiral balanced steady-state free precession(3D-bSSFP) urea sequence, interleaved with a metabolite-specific gradient echo (GRE) sequence for pyruvate and metabolic products, for improving the SNR and spatial resolution of the first hyperpolarized 13 C-MRI human study with injection of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea. METHODS: A metabolite-specific bSSFP urea imaging sequence was designed using a urea-specific excitation pulse, optimized TR, and 3D stack-of-spiral readouts. Simulations and phantom studies were performed to validate the spectral response of the sequence. The image quality of urea data acquired by the 3D-bSSFP sequence and the 2D-GRE sequence was evaluated with 2 identical injections of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea formula in a rat. Subsequently, the feasibility of the acquisition strategy was validated in a prostate cancer patient. RESULTS: Simulations and phantom studies demonstrated that 3D-bSSFP sequence achieved urea-only excitation, while minimally perturbing other metabolites (<1%). An animal study demonstrated that compared to GRE, bSSFP sequence provided an ∼2.5-fold improvement in SNR without perturbing urea or pyruvate kinetics, and bSSFP approach with a shorter spiral readout reduced blurring artifacts caused by J-coupling of [13 C,15 N2 ]urea. The human study demonstrated the in vivo feasibility and data quality of the acquisition strategy. CONCLUSION: The 3D-bSSFP urea sequence with a stack-of-spiral acquisition demonstrated significantly increased SNR and image quality for [13 C,15 N2 ]urea in co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea imaging studies. This work lays the foundation for future human studies to achieve high-quality and high-SNR metabolism and perfusion images.


Asunto(s)
Ácido Pirúvico , Urea , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino , Perfusión , Ácido Pirúvico/metabolismo , Ratas
2.
Magn Reson Med ; 88(6): 2609-2620, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35975978

RESUMEN

PURPOSE: To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS: This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS: This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.


Asunto(s)
Próstata , Neoplasias de la Próstata , Anciano , Humanos , Biopsia Guiada por Imagen/métodos , Lactatos , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Próstata/diagnóstico por imagen , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ácido Pirúvico , Ultrasonografía Intervencional/métodos
3.
Magn Reson Med ; 85(1): 518-530, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738073

RESUMEN

PURPOSE: To use fiducial markers containing manganese 55 to rapidly localize carbon 13 (13 C) RF coils for correcting images for B1 variation. METHODS: Hollow high-density polyethylene spheres were filled with 3M sodium permanganate and affixed to a rectangular 13 C-tuned RF coil. The relative positions of the markers and coil conductors were mapped using CT. Marker positions were measured by MRI using a series of 1D projections and automated peak detection. Once the coil location was determined, coil sensitivity was estimated using a quasi-static calculation. Simulations were performed to determine the minimum number of projections required for robust localization. Phantom experiments were used to confirm the accuracy of marker localization as well as the calculated coil sensitivity. Finally, in vivo validation was performed using hyperpolarized 13 C pyruvate in a rat model. RESULTS: In simulations, our algorithm was accurate in determining marker positions when at least 6 projections were used (RMSE 1.4 ± 0.9 mm). These estimates were verified in phantom experiments, where markers locations were determined with an RMS accuracy of 1.3 mm. A minimum SNR of 4 was required for automated detection to perform accurately. Computed coil sensitivity had a median error of 17% when taken over the entire measured area and 5.7% over a central region. In a rat, correction for nonuniform reception and flip angle was able to normalize the signals arising from asymmetrically positioned kidneys. CONCLUSION: Manganese 55 fiducial markers are an inexpensive and reliable method for rapidly localizing 13 C RF coils and correcting 13 C images for B1 variation without user intervention.


Asunto(s)
Marcadores Fiduciales , Imagen por Resonancia Magnética , Algoritmos , Animales , Fantasmas de Imagen , Ondas de Radio , Ratas
4.
Magn Reson Med ; 86(5): 2402-2411, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216051

RESUMEN

PURPOSE: To develop a novel post-processing pipeline for hyperpolarized (HP) 13 C MRSI that integrates tensor denoising and B1+ correction to measure pyruvate-to-lactate conversion rates (kPL ) in patients with liver tumors. METHODS: Seven HP 13 C MR scans of progressing liver tumors were acquired using a custom 13 C surface transmit/receive coil and the echo-planar spectroscopic imaging (EPSI) data analysis included B0 correction, tensor rank truncation, and zero- and first-order phase corrections to recover metabolite signals that would otherwise be obscured by spectral noise as well as a correction for inhomogeneous transmit ( B1+ ) using a B1+ map aligned to the coil position for each patient scan. Processed HP data and corrected flip angles were analyzed with an inputless two-site exchange model to calculate kPL . RESULTS: Denoising averages SNR increases of pyruvate, lactate, and alanine were 37.4-, 34.0-, and 20.1-fold, respectively, with lactate and alanine dynamics most noticeably recovered and better defined. In agreement with Monte Carlo simulations, over-flipped regions underestimated kPL and under-flipped regions overestimated kPL . B1+ correction addressed this issue. CONCLUSION: The new HP 13 C EPSI post-processing pipeline integrated tensor denoising and B1+ correction to measure kPL in patients with liver tumors. These technical developments not only recovered metabolite signals in voxels that did not receive the prescribed flip angle, but also increased the extent and accuracy of kPL estimations throughout the tumor and adjacent regions including normal-appearing tissue and additional lesions.


Asunto(s)
Neoplasias Hepáticas , Imagen por Resonancia Magnética , Isótopos de Carbono , Imagen Eco-Planar , Humanos , Cinética , Neoplasias Hepáticas/diagnóstico por imagen , Ácido Pirúvico
5.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32501614

RESUMEN

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Isótopos de Carbono , Niño , Humanos , Espectroscopía de Resonancia Magnética , Ácido Pirúvico , Relación Señal-Ruido
6.
Magn Reson Med ; 82(2): 833-841, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927300

RESUMEN

PURPOSE: To compare the performance of an 8-channel surface coil/clamshell transmitter and 32-channel head array coil/birdcage transmitter for hyperpolarized 13 C brain metabolic imaging. METHODS: To determine the field homogeneity of the radiofrequency transmitters, B1 + mapping was performed on an ethylene glycol head phantom and evaluated by means of the double angle method. Using a 3D echo-planar imaging sequence, coil sensitivity and noise-only phantom data were acquired with the 8- and 32-channel receiver arrays, and compared against data from the birdcage in transceiver mode. Multislice frequency-specific 13 C dynamic echo-planar imaging was performed on a patient with a brain tumor for each hardware configuration following injection of hyperpolarized [1-13 C]pyruvate. Signal-to-noise ratio (SNR) was evaluated from pre-whitened phantom and temporally summed patient data after coil combination based on optimal weights. RESULTS: The birdcage transmitter produced more uniform B1 + compared with the clamshell: 0.07 versus 0.12 (fractional error). Phantom experiments conducted with matched lateral housing separation demonstrated 8- versus 32-channel mean transceiver-normalized SNR performance: 0.91 versus 0.97 at the head center; 6.67 versus 2.08 on the sides; 0.66 versus 2.73 at the anterior; and 0.67 versus 3.17 on the posterior aspect. While the 8-channel receiver array showed SNR benefits along lateral aspects, the 32-channel array exhibited greater coverage and a more uniform coil-combined profile. Temporally summed, parameter-normalized patient data showed SNRmean,slice ratios (8-channel/32-channel) ranging 0.5-2.00 from apical to central brain. White matter lactate-to-pyruvate ratios were conserved across hardware: 0.45 ± 0.12 (8-channel) versus 0.43 ± 0.14 (32-channel). CONCLUSION: The 8- and 32-channel hardware configurations each have advantages in particular brain anatomy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Diseño de Equipo , Humanos , Neuroimagen/métodos , Fantasmas de Imagen , Ácido Pirúvico/metabolismo , Relación Señal-Ruido
7.
NMR Biomed ; 32(3): e4052, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664305

RESUMEN

Hyperpolarized 13 C MRI takes advantage of the unprecedented 50 000-fold signal-to-noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate conversion rate, kPL , a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF-induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID-Delay,Crush /kPL,FID-Delay  = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum-TE version (kPL,FID-Delay /kPL,FID  = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactate /Δωpyruvate  = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2 *, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin-echo sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE /kPL,FID  = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL . The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.


Asunto(s)
Isótopos de Carbono/metabolismo , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos C57BL , Modelos Teóricos
8.
Magn Reson Med ; 80(5): 2062-2072, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29575178

RESUMEN

PURPOSE: The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1-13 C]pyruvate to [1-13 C]lactate with whole gland coverage at high spatial and temporal resolution. METHODS: A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1-13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. RESULTS: Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1-13 C]pyruvate to [1-13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. CONCLUSION: The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure kPL , the kinetic rate constant of [1-13 C]pyruvate to [1-13 C]lactate conversion.


Asunto(s)
Imagen Eco-Planar/métodos , Imagenología Tridimensional/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Animales , Humanos , Masculino , Ratones , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Ratas
9.
NMR Biomed ; 31(11): e3997, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230646

RESUMEN

MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.


Asunto(s)
Isótopos de Carbono/química , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Ácido Pirúvico/metabolismo , Área Bajo la Curva , Simulación por Computador , Humanos , Masculino , Persona de Mediana Edad
10.
Magn Reson Med ; 75(2): 917-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25765516

RESUMEN

PURPOSE: Hyperpolarization of carbon-13 ((13) C) nuclei by dissolution dynamic nuclear polarization increases signal-to-noise ratio (SNR) by >10,000-fold for metabolic imaging, but care must be taken when transferring hyperpolarized (HP) samples from polarizer to MR scanner. Some (13) C substrates relax rapidly in low ambient magnetic fields. A handheld electromagnet carrier was designed and constructed to preserve polarization by maintaining a sufficient field during sample transfer. METHODS: The device was constructed with a solenoidal electromagnet, powered by a nonmagnetic battery, holding the HP sample during transfer. A specially designed switch automated deactivation of the field once transfer was complete. Phantom and rat experiments were performed to compare MR signal enhancement with or without the device for HP [(13) C]urea and [1-(13) C]pyruvate. RESULTS: The magnetic field generated by this device was tested to be >50 G over a 6-cm central section. In phantom and rat experiments, [(13) C]urea transported via the device showed SNR improvement by a factor of 1.8-1.9 over samples transferred through the background field. CONCLUSION: A device was designed and built to provide a suitably high yet safe magnetic field to preserve hyperpolarization during sample transfer. Comparative testing demonstrated SNR improvements of approximately two-fold for [(13) C]urea while maintaining SNR for [1-(13) C]pyruvate.


Asunto(s)
Campos Electromagnéticos , Imagen por Resonancia Magnética , Animales , Isótopos de Carbono , Diseño de Equipo , Fantasmas de Imagen , Ratas , Relación Señal-Ruido
11.
Magn Reson Med ; 71(1): 19-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24346964

RESUMEN

PURPOSE: To investigate hyperpolarized (13) C metabolic imaging methods in the primate brain that can be translated into future clinical trials for patients with brain cancer. METHODS: (13) C coils and pulse sequences designed for use in humans were tested in phantoms. Dynamic (13) C data were obtained from a healthy cynomolgus monkey brain using the optimized (13) C coils and pulse sequences. The metabolite kinetics were estimated from two-dimensional localized (13) C dynamic imaging data from the nonhuman primate brain. RESULTS: Pyruvate and lactate signal were observed in both the brain and the surrounding tissues with the maximum signal-to-noise ratio of 218 and 29 for pyruvate and lactate, respectively. Apparent rate constants for the conversion of pyruvate to lactate and the ratio of lactate to pyruvate showed a difference between brain and surrounding tissues. CONCLUSION: The feasibility of using hyperpolarized [1-(13) C]-pyruvate for assessing in vivo metabolism in a healthy nonhuman primate brain was demonstrated using a hyperpolarized (13) C imaging experimental setup designed for studying patients with brain tumors. The kinetics of the metabolite conversion suggests that this approach may be useful in future studies of human neuropathology.


Asunto(s)
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Ácido Pirúvico/metabolismo , Animales , Encéfalo/anatomía & histología , Isótopos de Carbono/farmacocinética , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Femenino , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Magn Reson Imaging ; 38(3): 701-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23293097

RESUMEN

PURPOSE: To implement and evaluate combined parallel magnetic resonance imaging (MRI) and partial Fourier acquisition and reconstruction for rapid hyperpolarized carbon-13 ((13) C) spectroscopic imaging. Short acquisition times mitigate hyperpolarized signal losses that occur due to T1 decay, metabolism, and radiofrequency (RF) saturation. Human applications additionally require rapid imaging to permit breath-holding and to minimize the effects of physiologic motion. MATERIALS AND METHODS: Numerical simulations were employed to validate and characterize the reconstruction. In vivo MR spectroscopic images were obtained from a rat following injection of hyperpolarized (13) C pyruvate using an 8-channel array of carbon-tuned receive elements. RESULTS: For small spectroscopic matrix sizes, combined parallel imaging and partial Fourier undersampling resulted primarily in decreased spatial resolution, with relatively less visible spatial aliasing. Parallel reconstruction qualitatively restored lost image detail, although some pixel spectra had persistent numerical error. With this technique, a 30 × 10 × 16 matrix of 4800 3D MR spectroscopy imaging voxels from a whole rat with isotropic 8 mm(3) resolution was acquired within 11 seconds. CONCLUSION: Parallel MRI and partial Fourier acquisitions can provide the shorter imaging times and wider spatial coverage that will be necessary as hyperpolarized (13) C techniques move toward human clinical applications.


Asunto(s)
Algoritmos , Isótopos de Carbono/farmacocinética , Carbono/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Imagen Molecular/métodos , Animales , Análisis de Fourier , Humanos , Masculino , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
IEEE Trans Med Imaging ; 39(2): 320-327, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31283497

RESUMEN

Kinetic modeling of the in vivo pyruvate-to-lactate conversion is crucial to investigating aberrant cancer metabolism that demonstrates Warburg effect modifications. Non-invasive detection of alterations to metabolic flux might offer prognostic value and improve the monitoring of response to treatment. In this clinical research project, hyperpolarized [1-13C] pyruvate was intravenously injected in a total of 10 brain tumor patients to measure its rate of conversion to lactate ( kPL ) and bicarbonate ( kPB ) via echo-planar imaging. Our aim was to investigate new methods to provide kPL and kPB maps with whole-brain coverage. The approach was data-driven and addressed two main issues: selecting the optimal model for fitting our data and determining an appropriate goodness-of-fit metric. The statistical analysis suggested that an input-less model had the best agreement with the data. It was also found that selecting voxels based on post-fitting error criteria provided improved precision and wider spatial coverage compared to using signal-to-noise cutoffs alone.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Imagen Eco-Planar/métodos , Ácido Pirúvico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/farmacocinética , Humanos , Interpretación de Imagen Asistida por Computador , Cinética , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Ácido Pirúvico/análisis , Ácido Pirúvico/farmacocinética
15.
Prostate Cancer Prostatic Dis ; 23(2): 269-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31685983

RESUMEN

BACKGROUND: Hyperpolarized (HP) 13C-pyruvate MRI is a stable-isotope molecular imaging modality that provides real-time assessment of the rate of metabolism through glycolytic pathways in human prostate cancer. Heretofore this imaging modality has been successfully utilized in prostate cancer only in localized disease. This pilot clinical study investigated the feasibility and imaging performance of HP 13C-pyruvate MR metabolic imaging in prostate cancer patients with metastases to the bone and/or viscera. METHODS: Six patients who had metastatic castration-resistant prostate cancer were recruited. Carbon-13 MR examination were conducted on a clinical 3T MRI following injection of 250 mM hyperpolarized 13C-pyruvate, where pyruvate-to-lactate conversion rate (kPL) was calculated. Paired metastatic tumor biopsy was performed with histopathological and RNA-seq analyses. RESULTS: We observed a high rate of glycolytic metabolism in prostate cancer metastases, with a mean kPL value of 0.020 ± 0.006 (s-1) and 0.026 ± 0.000 (s-1) in bone (N = 4) and liver (N = 2) metastases, respectively. Overall, high kPL showed concordance with biopsy-confirmed high-grade prostate cancer including neuroendocrine differentiation in one case. Interval decrease of kPL from 0.026 at baseline to 0.015 (s-1) was observed in a liver metastasis 2 months after the initiation of taxane plus platinum chemotherapy. RNA-seq found higher levels of the lactate dehydrogenase isoform A (Ldha,15.7 ± 0.7) expression relative to the dominant isoform of pyruvate dehydrogenase (Pdha1, 12.8 ± 0.9). CONCLUSIONS: HP 13C-pyruvate MRI can detect real-time glycolytic metabolism within prostate cancer metastases, and can measure changes in quantitative kPL values following treatment response at early time points. This first feasibility study supports future clinical studies of HP 13C-pyruvate MRI in the setting of advanced prostate cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Óseas/metabolismo , Isótopos de Carbono/análisis , Neoplasias Hepáticas/metabolismo , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/metabolismo , Ácido Pirúvico/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Carboplatino/administración & dosificación , Docetaxel/administración & dosificación , Estudios de Factibilidad , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Proyectos Piloto , Pronóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Tasa de Supervivencia
16.
Neuroimage Clin ; 27: 102323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32623139

RESUMEN

BACKGROUND: Hyperpolarized carbon-13 (HP-13C) MRI is a non-invasive imaging technique for probing brain metabolism, which may improve clinical cancer surveillance. This work aimed to characterize the consistency of serial HP-13C imaging in patients undergoing treatment for brain tumors and determine whether there is evidence of aberrant metabolism in the tumor lesion compared to normal-appearing tissue. METHODS: Serial dynamic HP [1-13C]pyruvate MRI was performed on 3 healthy volunteers (6 total examinations) and 5 patients (21 total examinations) with diffuse infiltrating glioma during their course of treatment, using a frequency-selective echo-planar imaging (EPI) sequence. HP-13C imaging at routine clinical timepoints overlapped treatment, including radiotherapy (RT), temozolomide (TMZ) chemotherapy, and anti-angiogenic/investigational agents. Apparent rate constants for [1-13C]pyruvate conversion to [1-13C]lactate (kPL) and [13C]bicarbonate (kPB) were simultaneously quantified based on an inputless kinetic model within normal-appearing white matter (NAWM) and anatomic lesions defined from 1H MRI. The inter/intra-subject consistency of kPL-NAWM and kPB-NAWM was measured in terms of the coefficient of variation (CV). RESULTS: When excluding scans following anti-angiogenic therapy, patient values of kPL-NAWM and kPB-NAWM were 0.020 s-1 ± 23.8% and 0.0058 s-1 ± 27.7% (mean ± CV) across 17 HP-13C MRIs, with intra-patient serial kPL-NAWM/kPB-NAWM CVs ranging 6.8-16.6%/10.6-40.7%. In 4/5 patients, these values (0.018 s-1 ± 13.4% and 0.0058 s-1 ± 24.4%; n = 13) were more similar to those from healthy volunteers (0.018 s-1 ± 5.0% and 0.0043 s-1 ± 12.6%; n = 6) (mean ± CV). The anti-angiogenic agent bevacizumab was associated with global elevations in apparent rate constants, with maximum kPL-NAWM in 2 patients reaching 0.047 ± 0.001 and 0.047 ± 0.003 s-1 (±model error). In 3 patients with progressive disease, anatomic lesions showed elevated kPL relative to kPL-NAWM of 0.024 ± 0.001 s-1 (±model error) in the absence of gadolinium enhancement, and 0.032 ± 0.008, 0.040 ± 0.003 and 0.041 ± 0.009 s-1 with gadolinium enhancement. The lesion kPB in patients was reduced to unquantifiable values compared to kPB-NAWM. CONCLUSION: Serial measures of HP [1-13C]pyruvate metabolism displayed consistency in the NAWM of healthy volunteers and patients. Both kPL and kPB were globally elevated following bevacizumab treatment, while progressive disease demonstrated elevated kPL in gadolinium-enhancing and non-enhancing lesions. Larger prospective studies with homogeneous patient populations are planned to evaluate metabolic changes following treatment.


Asunto(s)
Medios de Contraste , Glioma , Gadolinio , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Ácido Pirúvico
17.
Ann Neurol ; 64(6): 707-13, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19107998

RESUMEN

OBJECTIVE: Magnetic resonance imaging at 7 Tesla produces high-resolution gradient-echo phase images of patients with multiple sclerosis (MS) that quantify the local field shifts from iron in the basal ganglia and lesions. Phase imaging is easily integrated into clinical examinations because it is a postprocessing technique and does not require additional scanning. The purpose of this study was to quantify local field shifts in MS and to investigate their relation to disease duration and disability status. METHODS: Thirty-two subjects including 19 patients with MS and 13 age- and sex-matched control subjects were scanned at a spatial resolution of up to 195 x 260 microm. Data were postprocessed to produce anatomical quantitative phase images of local field shifts, as well as conventional magnitude images. RESULTS: The phase images showed an increased local field in the caudate, putamen, and globus pallidus of patients relative to control subjects (p < 0.01). The local field in the caudate was strongly correlated with disease duration (r(2) = 0.77; p < 0.001). Phase images showed contrast in 74% of the 403 lesions, increasing the total lesion count by more than 30% and showing distinct peripheral rings and a close association with vasculature. INTERPRETATION: The increased field in the basal ganglia and correlation with disease duration suggest pathological iron content increases in MS. The peripheral phase rings are consistent with histological data demonstrating iron-rich macrophages at the periphery of a subset of lesions. The clearly defined vessels penetrating MS lesions should increase our ability to detect focal vascular abnormalities specifically related to demyelinating processes.


Asunto(s)
Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Magn Reson ; 301: 73-79, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30851668

RESUMEN

Effective coil combination methods for human hyperpolarized 13C spectroscopy multi-channel data had been relatively unexplored. This study implemented and tested several coil combination methods, including (1) the sum-of-squares (SOS), (2) singular value decomposition (SVD), (3) Roemer method by using reference peak area as a sensitivity map (RefPeak), and (4) Roemer method by using ESPIRiT-derived sensitivity map (ESPIRiT). These methods were evaluated by numerical simulation, thermal phantom experiments, and human cancer patient studies. Overall, the SVD, RefPeak, and ESPIRiT methods demonstrated better accuracy and robustness than the SOS method. Extracting complex pyruvate signal provides an easy and excellent approximation of the coil sensitivity map while maintaining valuable phase information of the coil-combined data.


Asunto(s)
Imagen Molecular/métodos , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Isótopos de Carbono , Simulación por Computador , Campos Electromagnéticos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Ácido Pirúvico/química , Reproducibilidad de los Resultados , Relación Señal-Ruido
19.
Magn Reson Imaging ; 24(7): 825-32, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16916699

RESUMEN

A 3 T MLEV-point-resolved spectroscopy (PRESS) sequence employing optimized spectral-spatial and very selective outer-voxel suppression pulses was tested in 25 prostate cancer patients. At an echo time of 85 ms, the MLEV-PRESS sequence resulted in maximally upright inner resonances and minimal outer resonances of the citrate doublet of doublets. Magnetic resonance spectroscopic imaging (MRSI) exams performed at both 3 and 1.5 T for 10 patients demonstrated a 2.08+/-0.36-fold increase in signal-to-noise ratio (SNR) at 3 T as compared with 1.5 T for the center citrate resonances. This permitted the acquisition of MRSI data with a nominal spatial resolution of 0.16 cm3 at 3 T with similar SNR as the 0.34-cm3 data acquired at 1.5 T. Due to the twofold increase in spectral resolution at 3 T and the improved magnetic field homogeneity provided by susceptibility-matched endorectal coils, the choline resonance was better resolved from polyamine and creatine resonances as compared with 1.5 T spectra. In prostate cancer patients, the elevation of choline and the reduction of polyamines were more clearly observed at 3 T, as compared with 1.5 T MRSI. The increased SNR and corresponding spatial resolution obtainable at 3 T reduced partial volume effects and allowed improved detection of the presence and extent of abnormal metabolite levels in prostate cancer patients, as compared with 1.5 T MRSI.


Asunto(s)
Imagenología Tridimensional , Espectroscopía de Resonancia Magnética/métodos , Neoplasias de la Próstata/metabolismo , Anciano , Algoritmos , Colina/metabolismo , Citratos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad
20.
J Magn Reson ; 262: 1-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26679288

RESUMEN

A calibrationless parallel imaging technique developed previously for (1)H MRI was modified and tested for hyperpolarized (13)C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling.


Asunto(s)
Imagen por Resonancia Magnética/métodos , 1-Butanol/metabolismo , Algoritmos , Animales , Isótopos de Carbono , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Estudios Prospectivos , Ácido Pirúvico/metabolismo , Ratas , Ratas Sprague-Dawley , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA