Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biol Chem ; 299(6): 104837, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209824

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) play important roles in many neuronal processes and are believed to be involved in synaptic plasticity underlying the encoding of experience, including classic paradigms of learning and memory. These receptors have also been implicated in various neurodevelopmental disorders, such as Fragile X syndrome and autism. Internalization and recycling of these receptors in the neuron are important mechanisms to regulate the activity of the receptor and control the precise spatiotemporal localization of these receptors. Applying a "molecular replacement" approach in hippocampal neurons derived from mice, we demonstrate a critical role for protein interacting with C kinase 1 (PICK1) in regulating the agonist-induced internalization of mGluR1. We show that PICK1 specifically regulates the internalization of mGluR1, but it does not play any role in the internalization of the other member of group I mGluR family, mGluR5. Various regions of PICK1 viz., the N-terminal acidic motif, PDZ domain, and BAR domain play important roles in the agonist-mediated internalization of mGluR1. Finally, we demonstrate that PICK1-mediated internalization of mGluR1 is critical for the resensitization of the receptor. Upon knockdown of endogenous PICK1, mGluR1s stayed on the cell membrane as inactive receptors, incapable of triggering the MAP kinase signaling. They also could not induce AMPAR endocytosis, a cellular correlate for mGluR-dependent synaptic plasticity. Thus, this study unravels a novel role for PICK1 in the agonist-mediated internalization of mGluR1 and mGluR1-mediated AMPAR endocytosis that might contribute to the function of mGluR1 in neuropsychiatric disorders.


Asunto(s)
Proteínas Portadoras , Receptores AMPA , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Plasticidad Neuronal , Transporte de Proteínas/fisiología , Receptores AMPA/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(38): 23304-23310, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-31636216

RESUMEN

The induction of immediate-early gene (IEG) expression in brain nuclei in response to an experience is necessary for the formation of long-term memories. Additionally, the rapid dynamics of IEG induction and decay motivates the common use of IEG expression as markers for identification of neuronal assemblies ("ensembles") encoding recent experience. However, major gaps remain in understanding the rules governing the distribution of IEGs within neuronal assemblies. Thus, the extent of correlation between coexpressed IEGs, the cell specificity of IEG expression, and the spatial distribution of IEG expression have not been comprehensively studied. To address these gaps, we utilized quantitative multiplexed single-molecule fluorescence in situ hybridization (smFISH) and measured the expression of IEGs (Arc, Egr2, and Nr4a1) within spiny projection neurons (SPNs) in the dorsal striatum of mice following acute exposure to cocaine. Exploring the relevance of our observations to other brain structures and stimuli, we also analyzed data from a study of single-cell RNA sequencing of mouse cortical neurons. We found that while IEG expression is graded, the expression of multiple IEGs is tightly correlated at the level of individual neurons. Interestingly, we observed that region-specific rules govern the induction of IEGs in SPN subtypes within striatal subdomains. We further observed that IEG-expressing assemblies form spatially defined clusters within which the extent of IEG expression correlates with cluster size. Together, our results suggest the existence of IEG-expressing neuronal "superensembles," which are associated in spatial clusters and characterized by coherent and robust expression of multiple IEGs.


Asunto(s)
Encéfalo/metabolismo , Genes Inmediatos-Precoces , Neuronas/metabolismo , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Cocaína/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Imagen Individual de Molécula
3.
Proc Natl Acad Sci U S A ; 117(38): 23252-23260, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-31127037

RESUMEN

Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, Neurobiol. Learn. Mem. 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.


Asunto(s)
Potenciales de Acción , Encéfalo/fisiología , Genoma , Animales , Expresión Génica , Genes Inmediatos-Precoces , Humanos , Memoria , Plasticidad Neuronal
4.
J Neurosci ; 37(45): 10877-10881, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118217

RESUMEN

Almost all areas of the neocortex are connected with the claustrum, a nucleus located between the neocortex and the striatum, yet the functions of corticoclaustral and claustrocortical connections remain largely obscure. As major efforts to model the neocortex are currently underway, it has become increasingly important to incorporate the corticoclaustral system into theories of cortical function. This Mini-Symposium was motivated by a series of recent studies which have sparked new hypotheses regarding the function of claustral circuits. Anatomical, ultrastructural, and functional studies indicate that the claustrum is most highly interconnected with prefrontal cortex, suggesting important roles in higher cognitive processing, and that the organization of the corticoclaustral system is distinct from the driver/modulator framework often used to describe the corticothalamic system. Recent findings supporting roles in detecting novel sensory stimuli, directing attention and setting behavioral states, were the subject of the Mini-Symposium at the 2017 Society for Neuroscience Annual Meeting.


Asunto(s)
Ganglios Basales/fisiología , Neocórtex/fisiología , Vías Nerviosas/fisiología , Animales , Ganglios Basales/anatomía & histología , Conducta/fisiología , Conducta Animal/fisiología , Humanos , Neocórtex/anatomía & histología , Vías Nerviosas/anatomía & histología
5.
Nature ; 476(7359): 220-3, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21617644

RESUMEN

Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Corteza Cerebral/citología , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Conductividad Eléctrica , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Potenciales de la Membrana , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa , Sinapsis/metabolismo , Factores de Transcripción/genética , Transgenes
6.
Nat Genet ; 39(4): 503-12, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17322878

RESUMEN

Signaling pathways invoke interplays between forward signaling and feedback to drive robust cellular response. In this study, we address the dynamics of growth factor signaling through profiling of protein phosphorylation and gene expression, demonstrating the presence of a kinetically defined cluster of delayed early genes that function to attenuate the early events of growth factor signaling. Using epidermal growth factor receptor signaling as the major model system and concentrating on regulation of transcription and mRNA stability, we demonstrate that a number of genes within the delayed early gene cluster function as feedback regulators of immediate early genes. Consistent with their role in negative regulation of cell signaling, genes within this cluster are downregulated in diverse tumor types, in correlation with clinical outcome. More generally, our study proposes a mechanistic description of the cellular response to growth factors by defining architectural motifs that underlie the function of signaling networks.


Asunto(s)
Retroalimentación Fisiológica/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Transducción de Señal/genética , Factores de Transcripción/fisiología , Canales Iónicos Sensibles al Ácido , Células Cultivadas , Análisis por Conglomerados , Canales de Sodio Degenerina , Factor de Crecimiento Epidérmico/fisiología , Canales Epiteliales de Sodio/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Regulación de la Expresión Génica , Células HeLa , Humanos , Factores de Transcripción de Tipo Kruppel/fisiología , Factor de Transcripción MafF/fisiología , Modelos Biológicos , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/genética , Tristetraprolina/fisiología
7.
Nat Cell Biol ; 9(8): 961-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643115

RESUMEN

Cell migration driven by the epidermal growth factor receptor (EGFR) propels morphogenesis and involves reorganization of the actin cytoskeleton. Although de novo transcription precedes migration, transcript identity remains largely unknown. Through their actin-binding domains, tensins link the cytoskeleton to integrin-based adhesion sites. Here we report that EGF downregulates tensin-3 expression, and concomitantly upregulates cten, a tensin family member that lacks the actin-binding domain. Knockdown of cten or tensin-3, respectively, impairs or enhances mammary cell migration. Furthermore, cten displaces tensin-3 from the cytoplasmic tail of integrin beta1, thereby instigating actin fibre disassembly. In invasive breast cancer, cten expression correlates not only with high EGFR and HER2, but also with metastasis to lymph nodes. Moreover, treatment of inflammatory breast cancer patients with an EGFR/HER2 dual-specificity kinase inhibitor significantly downregulated cten expression. In conclusion, a transcriptional tensin-3-cten switch may contribute to the metastasis of mammary cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Receptores ErbB , Femenino , Humanos , Proteínas de Microfilamentos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tensinas
8.
Artículo en Inglés | MEDLINE | ID: mdl-38246893

RESUMEN

RATIONALE AND OBJECTIVES: Social factors play a critical role in human drug addiction, and humans often consume drugs together with their peers. In contrast, in traditional animal models of addiction, rodents consume or self-administer the drug in their homecage or operant self-administration chambers while isolated from their peers. Here, we describe HOMECAGE ("Home-cage Observation and Measurement for Experimental Control and Analysis in a Group-housed Environment"), a translationally relevant method for studying oral opioid self-administration in mice. This setting reduces experimental confounds introduced by social isolation or interaction with the experimenter. METHODS: We have developed HOMECAGE, a method in which mice are group-housed and individually monitored for their consumption of a drug vs. a reference liquid. RESULTS: Mice in HOMECAGE preserve naturalistic aspects of behavior, including social interactions and circadian activity. The mice showed a preference for fentanyl and escalated their fentanyl intake over time. Mice preferred to consume fentanyl in bouts during the dark cycle. Mice entrained to the reinforcement schedule of the task, optimizing their pokes to obtain fentanyl rewards, and maintained responding for fentanyl under a progressive ratio schedule. HOMECAGE also enabled the detection of cage-specific and individual-specific behavior patterns and allowed the identification of differences in fentanyl consumption between co-housed control and experimental mice. CONCLUSIONS: HOMECAGE serves as a valuable procedure for translationally relevant studies on oral opioid intake under conditions that more closely mimic the human condition. The method enables naturalistic investigation of factors contributing to opioid addiction-related behaviors and can be used to identify novel treatments.

9.
Nat Commun ; 15(1): 5415, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926345

RESUMEN

The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.


Asunto(s)
Claustro , Giro del Cíngulo , Neuronas , Sueño , Animales , Giro del Cíngulo/fisiología , Masculino , Sueño/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Ratones , Claustro/fisiología , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Atención/fisiología , Vigilia/fisiología
10.
Curr Biol ; 33(13): 2761-2773.e8, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37379841

RESUMEN

The synthetic opioid fentanyl is a major contributor to the current opioid addiction crisis. We report that claustral neurons projecting to the frontal cortex limit oral fentanyl self-administration in mice. We found that fentanyl transcriptionally activates frontal-projecting claustrum neurons. These neurons also exhibit a unique suppression of Ca2+ activity upon initiation of bouts of fentanyl consumption. Optogenetic stimulation of frontal-projecting claustral neurons, intervening in this suppression, decreased bouts of fentanyl consumption. In contrast, constitutive inhibition of frontal-projecting claustral neurons in the context of a novel, group-housed self-administration procedure increased fentanyl bout consumption. This same manipulation also sensitized conditioned-place preference for fentanyl and enhanced the representation of fentanyl experience in the frontal cortex. Together, our results indicate that claustrum neurons exert inhibitory control over frontal cortical neurons to restrict oral fentanyl intake. Upregulation of activity in the claustro-frontal projection may be a promising strategy for reducing human opioid addiction.


Asunto(s)
Claustro , Trastornos Relacionados con Opioides , Ratones , Humanos , Animales , Claustro/fisiología , Analgésicos Opioides/farmacología , Ganglios Basales/fisiología , Lóbulo Frontal , Neuronas/fisiología , Fentanilo/farmacología
11.
J Neurosci ; 30(49): 16437-52, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21147983

RESUMEN

NMDA receptor (NMDAR)-dependent long-term depression (LTD) in the hippocampus is mediated primarily by the calcium-dependent removal of AMPA receptors (AMPARs) from the postsynaptic density. The AMPAR-binding, PDZ (PSD-95/Dlg/ZO1) and BAR (Bin/amphiphysin/Rvs) domain-containing protein PICK1 has been implicated in the regulation of AMPAR trafficking underlying several forms of synaptic plasticity. Using a strategy involving small hairpin RNA-mediated knockdown of PICK1 and its replacement with recombinant PICK1, we performed a detailed structure-function analysis of the role of PICK1 in hippocampal synaptic plasticity and the underlying NMDAR-induced AMPAR trafficking. We found that PICK1 is not necessary for maintenance of the basal synaptic complement of AMPARs or expression of either metabotropic glutamate receptor-dependent LTD or NMDAR-dependent LTP. Rather, PICK1 function is specific to NMDAR-dependent LTD and the underlying AMPAR trafficking. Furthermore, although PICK1 does not regulate the initial phase of NMDAR-induced AMPAR endocytosis, it is required for intracellular retention of internalized AMPARs. Detailed biophysical analysis of an N-terminal acidic motif indicated that it is involved in intramolecular electrostatic interactions that are disrupted by calcium. Mutations that interfered with the calcium-induced structural changes in PICK1 precluded LTD and the underlying NMDAR-induced intracellular retention of AMPARs. These findings support a model whereby calcium-induced modification of PICK1 structure is critical for its function in the retention of internalized AMPARs that underlies the expression of hippocampal NMDAR-dependent LTD.


Asunto(s)
Calcio/metabolismo , Proteínas Portadoras/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Animales , Animales Recién Nacidos , Calcio/farmacología , Proteínas Portadoras/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Inmunoprecipitación/métodos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Proteínas Nucleares/genética , Técnicas de Placa-Clamp/métodos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley
12.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724178

RESUMEN

Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking.


The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum ­ the brain area that responds to rewards and helps to plan movement ­ show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific 'spiny projection' neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.


Asunto(s)
Cocaína/administración & dosificación , Cuerpo Estriado/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Neuronas/metabolismo , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Conducta Exploratoria/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Cereb Cortex Commun ; 1(1): tgaa062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296125

RESUMEN

The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine structure, has limited the degree to which it could be studied in vivo. Particularly in humans, identifying the claustrum using magnetic resonance imaging (MRI) is extremely challenging, even manually. Therefore, automatic segmentation of the claustrum is an invaluable step toward enabling extensive and reproducible research of the anatomy and function of the human claustrum. In this study, we developed an automatic algorithm for segmenting the human dorsal claustrum in vivo using high-resolution MRI. Using this algorithm, we segmented the dorsal claustrum bilaterally in 1068 subjects of the Human Connectome Project Young Adult dataset, a publicly available high-resolution MRI dataset. We found good agreement between the automatic and manual segmentations performed by 2 observers in 10 subjects. We demonstrate the use of the segmentation in analyzing the covariation of the dorsal claustrum with other brain regions, in terms of macro- and microstructure. We identified several covariance networks associated with the dorsal claustrum. We provide an online repository of 1068 bilateral dorsal claustrum segmentations.

14.
Curr Biol ; 30(18): 3522-3532.e6, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32707061

RESUMEN

The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.


Asunto(s)
Ganglios Basales/fisiología , Claustro/fisiología , Cocaína/farmacología , Lóbulo Frontal/fisiología , Neuronas/fisiología , Recompensa , Animales , Ganglios Basales/efectos de los fármacos , Claustro/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Lóbulo Frontal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Receptores de Dopamina D1/metabolismo
15.
Dev Cell ; 5(3): 475-86, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12967566

RESUMEN

ErbB-2/HER2 drives epithelial malignancies by forming heterodimers with growth factor receptors. The primordial invertebrate receptor is sorted to the basolateral epithelial surface by binding of the PDZ domain of Lin-7 to the receptor's tail. We show that all four human ErbBs are basolaterally expressed, even when the tail motif is absent. Mutagenesis of hLin-7 unveiled a second domain, KID, that binds to the kinase region of ErbBs. The PDZ interaction mediates stabilization of ErbB-2 at the basolateral surface. On the other hand, binding of KID is involved in initial delivery to the basolateral surface, and in its absence, unprocessed ErbB-2 molecules are diverted to the apical surface. Hence, distinct domains of Lin-7 regulate receptor delivery to and maintenance at the basolateral surface of epithelia.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Polaridad Celular , Epitelio/metabolismo , Proteínas de la Membrana/fisiología , Receptor ErbB-2/biosíntesis , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Perros , Humanos , Riñón , Mutación , Transporte de Proteínas/fisiología , Receptor ErbB-2/genética , Receptor ErbB-2/fisiología , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transfección
16.
Eur J Neurosci ; 30(8): 1443-50, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19821836

RESUMEN

Long-term depression (LTD) in CA1 pyramidal neurons can be induced by activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs), both of which elicit changes in synaptic efficacy through alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) endocytosis. To address the role of the ubiquitin-proteasome system in regulating AMPAR endocytosis during these forms of LTD, we examined the effects of pharmacological inhibitors of proteasomal degradation and protein ubiquitination on endocytosis of glutamate receptor 1 (GluR1) -containing AMPARs in dissociated rat hippocampal cultures as well as LTD of excitatory synaptic responses in acute rat hippocampal slices. Our findings suggest that the contribution of the ubiquitin-proteasome system to NMDAR-induced vs. mGluR-induced AMPAR endocytosis and the consequent LTD differs significantly. NMDAR-induced AMPAR endocytosis and LTD occur independently of proteasome function but appear to depend, at least in part, on ubiquitination. In contrast, mGluR-induced AMPAR endocytosis and LTD are enhanced by inhibition of proteasomal degradation, as well as by the inhibitor of protein ubiquitination. Furthermore, the decay of mGluR-induced membrane depolarization and Erk activation is delayed following inhibition of either ubiquitination or proteasomal degradation. These results suggest that, although NMDAR-dependent LTD may utilize ubiquitin as a signal for AMPAR endocytosis, mGluR-induced signaling and LTD are limited by a feedback mechanism that involves the ubiquitin-proteasome system.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina/metabolismo , Animales , Animales Recién Nacidos , Región CA1 Hipocampal/citología , Inhibidores de Cisteína Proteinasa/farmacología , Estimulación Eléctrica/métodos , Endocitosis/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Técnicas de Placa-Clamp/métodos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
17.
Front Syst Neurosci ; 13: 28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379523

RESUMEN

Here, we review the neural circuit bases of habits, compulsions, and addictions, behaviors which are all characterized by relatively automatic action performance. We discuss relevant studies, primarily from the rodent literature, and describe how major headway has been made in identifying the brain regions and neural cell types whose activity is modulated during the acquisition and performance of these automated behaviors. The dorsal striatum and cortical inputs to this structure have emerged as key players in the wider basal ganglia circuitry encoding behavioral automaticity, and changes in the activity of different neuronal cell-types in these brain regions have been shown to co-occur with the formation of automatic behaviors. We highlight how disordered functioning of these neural circuits can result in neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss how the next phase of research in the field may benefit from integration of approaches for access to cells based on their genetic makeup, activity, connectivity and precise anatomical location.

19.
Neuropsychopharmacology ; 33(1): 18-41, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17728696

RESUMEN

Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity. Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología
20.
Curr Biol ; 28(17): 2752-2762.e7, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30122531

RESUMEN

A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.


Asunto(s)
Atención/fisiología , Ganglios Basales/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Técnicas de Sustitución del Gen , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA