RESUMEN
Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.
Asunto(s)
Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Orthomyxoviridae/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Anticuerpos ampliamente neutralizantes/genética , Reacciones Cruzadas , Epítopos de Linfocito B/inmunología , Genes de Inmunoglobulinas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Orthomyxoviridae/clasificación , Dominios Proteicos , Hipermutación Somática de InmunoglobulinaRESUMEN
Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Epítopos/química , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Células B de Memoria/inmunologíaRESUMEN
Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.
Asunto(s)
Vacunas contra la COVID-19 , Infecciones por Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Ratones , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Estaciones del Año , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Protección Cruzada/inmunologíaRESUMEN
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.
Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Reacciones Cruzadas , Femenino , Ratones , Ratones Endogámicos BALB C , Células VeroRESUMEN
Zoonotic viruses continually pose a pandemic threat. Infection of humans with viruses for which we typically have little or no prior immunity can result in epidemics with high morbidity and mortality. These epidemics can have public health and economic impact and can exacerbate civil unrest or political instability. Changes in human behavior in the past few decades-increased global travel, farming intensification, the exotic animal trade, and the impact of global warming on animal migratory patterns, habitats, and ecosystems-contribute to the increased frequency of cross-species transmission events. Investing in the pre-clinical advancement of vaccine candidates against diverse emerging viral threats is crucial for pandemic preparedness. Replication-defective adenoviral (Ad) vectors have demonstrated their utility as an outbreak-responsive vaccine platform during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Ad vectors are easy to engineer; are amenable to rapid, inexpensive manufacturing; are relatively safe and immunogenic in humans; and, importantly, do not require specialized cold-chain storage, making them an ideal platform for equitable global distribution or stockpiling. In this review, we discuss the progress in applying Ad-based vaccines against emerging viruses and summarize their global safety profile, as reflected by their widespread geographic use during the SARS-CoV-2 pandemic.
Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Vacunas , Vacunas Virales , Adenoviridae/genética , Animales , COVID-19/epidemiología , COVID-19/prevención & control , Ecosistema , Pandemias/prevención & control , SARS-CoV-2/genéticaRESUMEN
Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adenoviridae/genética , Animales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB CRESUMEN
Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.
Asunto(s)
Antígenos Virales/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Nucleósidos/química , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Sintéticas/administración & dosificación , Animales , Anticuerpos Antivirales/metabolismo , Antígenos Virales/química , Modelos Animales de Enfermedad , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Inyecciones Intradérmicas , Liposomas , Ratones , Células 3T3 NIH , Nanopartículas , Neuraminidasa/química , Neuraminidasa/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Infecciones por Orthomyxoviridae/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología , Vacunas de ARNmRESUMEN
The search for vaccines that protect from severe morbidity and mortality because of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Here we describe an amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile. It is water-soluble and exhibits massive translocation to lymph nodes upon local administration through binding to albumin, affording localized innate immune activation and reduction in systemic inflammation. The adjuvanticity of IMDQ-PEG-CHOL was validated in a licensed vaccine setting (quadrivalent influenza vaccine) and an experimental trimeric recombinant SARS-CoV-2 spike protein vaccine, showing robust IgG2a and IgG1 antibody titers in mice that could neutralize viral infection in vitro and in vivo in a mouse model.
Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Imidazoles/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Quinolinas/uso terapéutico , Animales , Vacunas contra la COVID-19/inmunología , Colesterol/análogos & derivados , Colesterol/inmunología , Colesterol/uso terapéutico , Femenino , Humanos , Imidazoles/inmunología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Glicoproteínas de Membrana/agonistas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Polietilenglicoles/uso terapéutico , Quinolinas/inmunología , Proteínas Recombinantes/inmunología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Tensoactivos/uso terapéutico , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistasRESUMEN
Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2-/- and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5-FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2-/- or NSG serum. Rag 2-/- serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2-/- serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2-/- serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR.IMPORTANCE The intravascular administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy.
Asunto(s)
Adenovirus Humanos/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Vectores Genéticos , Suero/inmunología , Células A549 , Adenovirus Humanos/clasificación , Animales , Línea Celular , Línea Celular Tumoral , Factor X/metabolismo , Humanos , Inmunocompetencia , Huésped Inmunocomprometido , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Unión Proteica , Serogrupo , Tropismo ViralRESUMEN
Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection.
Asunto(s)
Adenovirus de los Simios/genética , Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/efectos adversos , Pan troglodytes/virología , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Proteínas de la Matriz Viral/metabolismo , Replicación Viral/inmunología , Adolescente , Adulto , Animales , Antígenos Virales/inmunología , Relación Dosis-Respuesta Inmunológica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Células HEK293 , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Persona de Mediana Edad , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Vacunación/efectos adversos , Proteínas del Núcleo Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Adulto JovenRESUMEN
Current seasonal influenza vaccines have reduced immunogenicity and are of suboptimal efficacy in older adults. We have previously shown that the novel candidate vaccine MVA-NP+M1 is able to boost memory T cell responses in adults aged 50-85 years. Preclinical studies have demonstrated that viral vectored vaccines can act as adjuvants when coadministered with protein-based vaccines. We have conducted a phase I clinical trial to compare the coadministration of seasonal influenza vaccine and MVA-NP+M1 with seasonal influenza vaccine alone in adults aged 50 years and above. This combination of vaccines was safe and well tolerated. T cell responses to internal influenza proteins were boosted to significantly higher levels in the group receiving MVA-NP+M1 compared with the group receiving seasonal influenza vaccine alone. Rates of seroprotection and seroconversion against the three vaccine strains were similar in both groups; however, there was a significant increase in the geometric mean titer ratio for the H3N2 component of seasonal influenza vaccine in the coadministration group. While some vaccine combinations result in immune interference, the coadministration of MVA-NP+M1 alongside seasonal influenza vaccine is shown here to increase some influenza strain-specific antibody responses and boost memory T cells capable of recognizing a range of influenza A subtypes.
Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Proteínas del Núcleo Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Vacunas Virales/administración & dosificación , Anciano , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/efectos adversos , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas de ADN , Vacunas Virales/efectos adversosRESUMEN
BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).
Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Inmunidad Celular , Vacunas contra la Influenza , Gripe Humana , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Adulto , Masculino , Linfocitos T/inmunología , Inmunización Secundaria , Interferón gamma/metabolismo , Nucleoproteínas/inmunología , Adulto Joven , Virus de la Influenza A/inmunologíaRESUMEN
Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector "ChAdOx1" in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector.
RESUMEN
The development of adenoviral vectors for intravascular (i.v.) delivery will require improvements to their in vivo safety and efficacy. The hypervariable regions (HVRs) of the Ad5 hexon are a target for neutralizing antibodies, but also interact with factor X (FX), facilitating hepatocyte transduction. Ad48, a species D adenovirus, does not bind FX and has low seroprevalence. Therefore, it has been suggested that Ad5HVR48(1-7), a hexon-chimeric vector featuring the seven HVRs from Ad48, should display advantageous properties for gene therapy, by evading pre-existing Ad5 immunity and blocking FX interactions. We investigated the in vivo biodistribution of Ad5, Ad5HVR48(1-7), and Ad48 following i.v. delivery. Ad5HVR48(1-7) displayed reduced hepatocyte transduction and accumulation in Kupffer cells (KCs), but triggered a robust proinflammatory response, even at relatively low doses of vector. We detected elevated serum transaminases (48 hours) and increased numbers of periportal CD11b(+)/Gr-1(+) cells in the livers of Ad5HVR48(1-7)-treated animals following i.v., but not intramuscular (i.m.), delivery. In contrast, Ad48 did not elevate transaminases or result in the accumulation of CD11b(+)/Gr-1(+) cells. Collectively, these findings suggest that substantial hexon modifications can lead to unexpected properties which cannot be predicted from parental viruses. Therefore, refined mutations may be preferential for the successful development of targeted vector systems which require i.v. administration.
Asunto(s)
Adenoviridae/inmunología , Administración Intravenosa , Vectores Genéticos/efectos adversos , Vectores Genéticos/inmunología , Animales , Vectores Genéticos/administración & dosificación , Células Hep G2 , Humanos , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transaminasas/genética , Transaminasas/metabolismoRESUMEN
Influenza A virus (IAV) is a leading cause of respiratory disease worldwide often resulting in severe morbidity and mortality. We have previously shown that the Bacterial Enzymatic Combinatorial Chemistry (BECC) adjuvants, BECC438 and BECC470, formulated with an influenza virus hemagglutinin (HA) protein vaccine, offer greater protection from influenza virus challenge in mouse respiratory models using adult mice than standard HA:adjuvant combinations. In this study, we determined that immunization with HA + BECC adjuvants also significantly broadened the epitopes targeted on HA as compared with other adjuvants, resulting in increased titers of antibodies directed against the highly conserved HA stalk domain. Importantly, we demonstrate that BECC470 combined with an influenza virus HA protein antigen in a prime-only immunization regimen was able to achieve complete protection from challenge in a ~ 12-month-old mouse aged model. Together, this demonstrates the heightened protection provided by the BECC470 adjuvant in an influenza virus vaccine model and shows the enhanced immune response, as compared to other adjuvants elicited by the formulation of HA with BECC470.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Gripe Humana , Ratones Endogámicos BALB C , Receptor Toll-Like 4RESUMEN
Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Animales , Ratones , Hemaglutininas , Anticuerpos , Vacunación , Epítopos InmunodominantesRESUMEN
Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or α(v) integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for α(v) integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of α(v) integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define organ targeting following contact of human adenoviruses with blood.