Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mutat ; 40(4): 458-471, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653781

RESUMEN

Lynch syndrome (LS) is an autosomal dominant inherited disorder that is associated with an increased predisposition to certain cancers caused by loss-of-function mutations in one of four DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2). The diagnosis of LS is often challenged by the identification of missense mutations where the functional effects are not known. These are termed variants of uncertain significance (VUSs) and account for 20%-30% of noncoding and missense mutations. VUSs cause ambiguity during clinical diagnosis and hinder implementation of appropriate medical management. In the current study, we focus on the functional and biological consequences of two nonsynonymous VUSs in PMS2. These variants, c.620G>A and c.123_131delGTTAGTAGA, result in the alteration of glycine 207 to glutamate (p.Gly207Glu) and the deletion of amino acid residues 42-44 (p.Leu42_Glu44del), respectively. While the PMS2 p.Gly207Glu variant retains in vitro MMR and ATPase activities, PMS2 p.Leu42_Glu44del appears to lack such capabilities. Structural and biophysical characterization using circular dichroism, small-angle X-ray scattering, and X-ray crystallography of the N-terminal domain of the PMS2 variants indicate that the p.Gly207Glu variant is properly folded similar to the wild-type enzyme, whereas p.Leu42_Glu44del is disordered and prone to aggregation.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Alelos , Sustitución de Aminoácidos , Biomarcadores , Línea Celular , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Frecuencia de los Genes , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/química , Mutación , Linaje , Conformación Proteica , Medición de Riesgo , Relación Estructura-Actividad
2.
Mol Genet Genomic Med ; : e1908, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189042

RESUMEN

Hereditary cancer syndromes account for approximately 5%-10% of all diagnosed cancer cases. Lynch syndrome (LS) is an autosomal dominant hereditary cancer condition that predisposes individuals to an elevated lifetime risk for developing colorectal, endometrial, and other cancers. LS results from a pathogenic mutation in one of four mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2). The diagnosis of LS is often challenged by the identification of missense mutations, termed variants of uncertain significance, whose functional effect on the protein is not known. Of the eight PMS2 variants initially selected for this study, we identified a variant within the N-terminal domain where asparagine 335 is mutated to serine, p.Asn335Ser, which lacked ATPase activity, yet appears to be proficient in MMR. To expand our understanding of this functional dichotomy, we performed biophysical and structural studies, and noted that p.Asn335Ser binds to ATP but is unable to hydrolyze it to ADP. To examine the impact of p.Asn335Ser on MMR, we developed a novel in-cell fluorescent-based microsatellite instability reporter that revealed p.Asn335Ser maintained genomic stability. We conclude that in the absence of gross structural changes, PMS2 ATP hydrolysis is not necessary for proficient MMR and that the ATPase deficient p.Asn335Ser variant is likely benign.

3.
Sci Rep ; 9(1): 5969, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979909

RESUMEN

Cholesterol is an essential component of membranes, which is acquired by cells via receptor-mediated endocytosis of lipoproteins or via de novo synthesis. In specialized cells, anabolic enzymes metabolize cholesterol, generating steroid hormones or bile acids. However, surplus cholesterol cannot be catabolized due to the lack of enzymes capable of degrading the cholestane ring. The inability to degrade cholesterol becomes evident in the development and progression of cardiovascular disease, where the accumulation of cholesterol/cholesteryl-esters in macrophages can elicit a maladaptive immune response leading to the development and progression of atherosclerosis. The discovery of cholesterol catabolic pathways in Actinomycetes led us to the hypothesis that if enzymes enabling cholesterol catabolism could be genetically engineered and introduced into human cells, the atherosclerotic process may be prevented or reversed. Comparison of bacterial enzymes that degrade cholesterol to obtain carbon and generate energy with the action of human enzymes revealed that humans lack a 3-ketosteroid Δ1-dehydrogenase (Δ1-KstD), which catalyzes the C-1 and C-2 desaturation of ring A. Here we describe the construction, heterologous expression, and actions of a synthetic humanized Δ1-KstD expressed in Hep3B and U-937 cells, providing proof that one of three key enzymes required for cholesterol ring opening can be functionally expressed in human cells.


Asunto(s)
Colesterol/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Línea Celular , Escherichia coli , Ingeniería Genética , Humanos , Oxidorreductasas/genética , Prueba de Estudio Conceptual
4.
Mol Cancer Ther ; 18(3): 556-566, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679389

RESUMEN

LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/química , Fosfoproteínas Fosfatasas/química , Piperazinas/química , Proteína Fosfatasa 2/química , Secuencia de Aminoácidos/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Catálisis , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Humanos , Metales/química , Metilación , Mutagénesis Sitio-Dirigida , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Piperazinas/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA