RESUMEN
The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.
Asunto(s)
COVID-19/metabolismo , Regulación de la Expresión Génica , Proteoma/biosíntesis , Proteómica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patología , COVID-19/terapia , Femenino , Humanos , Masculino , Especificidad de ÓrganosRESUMEN
Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.
Asunto(s)
Infecciones por Coronavirus/sangre , Metabolómica , Neumonía Viral/sangre , Proteómica , Adulto , Aminoácidos/metabolismo , Biomarcadores/sangre , COVID-19 , Análisis por Conglomerados , Infecciones por Coronavirus/fisiopatología , Femenino , Humanos , Metabolismo de los Lípidos , Aprendizaje Automático , Macrófagos/patología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/fisiopatología , Índice de Severidad de la EnfermedadRESUMEN
Data-independent acquisition (DIA) mass spectrometry-based proteomics generates reproducible proteome data. The complex processing of the DIA data has led to the development of multiple data analysis tools. In this study, we assessed the performance of five tools (OpenSWATH, EncyclopeDIA, Skyline, DIA-NN, and Spectronaut) using six DIA datasets obtained from TripleTOF, Orbitrap, and TimsTOF Pro instruments. By comparing identification and quantification metrics and examining shared and unique cross-tool identifications, we evaluated both library-based and library-free approaches. Our findings indicate that library-free approaches outperformed library-based methods when the spectral library had limited comprehensiveness. However, our results also suggest that constructing a comprehensive library still offers benefits for most DIA analyses. This study provides comprehensive guidance for DIA data analysis tools, benefiting both experienced and novice users of DIA-mass spectrometry technology.
Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas/métodos , Proteómica/métodos , Proteoma/análisis , Biblioteca de Genes , Análisis de DatosRESUMEN
Gel electrolytes are gaining attention for rechargeable Zn-ion batteries because of their high safety, high flexibility, and excellent comprehensive electrochemical performances. However, current gel electrolytes still perform at mediocre levels due to incomplete Zn salts dissociation and side reactions. Herein, an electrostatic-induced dual-salt strategy is proposed to upgrade gel electrolytes to tackle intrinsic issues of Zn metal anodes. The competitive coordination mechanism driven by electrostatic repulsion and steric hindrance of dual anions promotes zinc salt dissociation at low lithium salt addition levels, improving ion transport and mechanical properties of gel electrolytes. Li+ ions and gel components coordinate with H2O, reducing active H2O molecules and inhibiting associated side reactions. The dual-salt gel electrolyte enables excellent reversibility of Zn anodes at both room and low temperatures. Zn||Polyaniline cells using the dual-salt gel electrolyte exhibit a high discharge capacity of 180 mAh g-1 and long-term cycling stability over 180 cycles at -20 °C. The dual-salt strategy offers a cost-effective approach to improving gel electrolytes for high-performance flexible Zn-ion batteries.
RESUMEN
OBJECTIVES: To update traditional "wet" matrices to dried blood spot (DBS) sampling, based on the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) technique, and develop a method for simultaneous analyzing caffeine and its three primary metabolites (theobromine, paraxanthine, and theophylline), supporting routine therapeutic drug monitoring (TDM) for preterm infants. METHODS: DBS samples were prepared by a two-step quantitative sampling method, i.e., volumetric sampling of a quantitative 10⯵L volume of peripheral blood and an 8â¯mm diameter whole punch extraction by a methanol/water (80/20, v/v) mixture containing 125â¯mM formic acid. Four paired stable isotope labeled internal standards and a collision energy defect strategy were applied for the method optimization. The method was fully validated following international guidelines and industrial recommendations on DBS analysis. Cross validation with previously developed plasma method was also proceeded. The validated method was then implemented on the TDM for preterm infants. RESULTS: The two-step quantitative sampling strategy and a high recovery extraction method were developed and optimized. The method validation results were all within the acceptable criteria. Satisfactory parallelism, concordance, and correlation were observed between DBS and plasma concentrations of the four analytes. The method was applied to provide routine TDM services to 20 preterm infants. CONCLUSIONS: A versatile LC-MS/MS platform for simultaneous monitoring caffeine and its three primary metabolites was developed, fully validated, and successfully applied into the routine clinical TDM practices. Sampling method switching from "wet" matrices to "dry" DBS will facilitate and support the precision dosing of caffeine for preterm infants.
Asunto(s)
Cafeína , Recien Nacido Prematuro , Humanos , Recién Nacido , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Plasma , Pruebas con Sangre Seca/métodos , Monitoreo de Drogas/métodos , Reproducibilidad de los ResultadosRESUMEN
To evaluate lenticular biomechanical and geometric parameters in Chinese adults with myopia and identify relevant factors using Brillouin microscopy (BM) and Pentacam. The biomechanical and geometric properties of the ocular lenses of Chinese adults with myopia were quantified using BM. Anterior segment images were acquired using a Pentacam. Correlated factors including age, sex, spherical equivalent (SE), intraocular pressure (IOP), axial length (AL), white-to-white ratio (WTW), central corneal thickness (CCT), anterior chamber depth (ACD), anterior chamber volume (ACV), and anterior chamber angle (ACA) were analyzed. We studied 65 eyes from 65 participants (mean age, 25.23 ± 6.12 years). Width of Top Plateau (WTP), Width of Bottom Plateau (WBP), Slope of Anterior Cortex (SAC), Slope of Posterior Cortex (SPC), and Height of Plateau (Height) metrics obtained using BM showed mean values of 2.597 ± 0.393 mm, 4.310 ± 0.535 mm, 1.344 ± 0.549 GPa/mm, -1.343 ± 0.480 GPa/mm, and 3.373 ± 0.048 GPa, respectively. No significant correlation was found between these parameters and sex, SE, IOP, CCT, ACA, or Height. Interestingly, WBP (r = 0.467, P < 0.001), SAC (r = 0.412, P = 0.001), and SPC (r = -0.280, P = 0.024) were significantly associated with age, and an age-related increase of WBP (slope of 35.36 ± 10.08 µm per year) was identified. Both ACD and ACV showed significant correlations with SAC (r = 0.329 and 0.380, P = 0.008 and 0.002, respectively), but not with SPC. BM provided a novel perspective on lenticular biomechanical and geometric properties in Chinese adults with myopia, which correlated with age, AL, WTW, ACD, and ACV.
Asunto(s)
Presión Intraocular , Cristalino , Miopía , Humanos , Masculino , Femenino , Adulto , Miopía/etnología , Miopía/fisiopatología , Miopía/diagnóstico , Cristalino/diagnóstico por imagen , China/epidemiología , Adulto Joven , Presión Intraocular/fisiología , Longitud Axial del Ojo/patología , Microscopía/métodos , Persona de Mediana Edad , Adolescente , Cámara Anterior/diagnóstico por imagen , Cámara Anterior/patología , Pueblos del Este de AsiaRESUMEN
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Asunto(s)
Endotelio Vascular , Sífilis , Treponema pallidum , Humanos , Sífilis/microbiología , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Células Endoteliales/patología , Células Endoteliales/microbiologíaRESUMEN
The ongoing SARS-CoV-2 pandemic has underscored the urgent need for versatile and rapidly deployable antiviral strategies. While vaccines have been pivotal in controlling the spread of the virus, the emergence of new variants continues to pose significant challenges to global health. Here, our study focuses on a novel approach to antiviral therapy using DNA aptamers, short oligonucleotides with high specificity and affinity for their targets, as potential inhibitors against the spike protein of SARS-CoV-2 variants Omicron and JN.1. Our research utilizes steered molecular dynamics (SMD) simulations to elucidate the binding mechanisms of a specifically designed DNA aptamer, AM032-4, to the receptor-binding domain (RBD) of the aforementioned variants. The simulations reveal detailed molecular insights into the aptamer-RBD interaction, demonstrating the aptamer's potential to maintain effective binding in the face of rapid viral evolution. Our work not only demonstrates the dynamic interaction between aptamer-RBD for possible antiviral therapy but also introduces a computational method to study aptamer-protein interactions.
Asunto(s)
Aptámeros de Nucleótidos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Tratamiento Farmacológico de COVID-19 , Dominios Proteicos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/químicaRESUMEN
LiNi0.8 Co0.1 Mn0.1 O2 (NCM-811) exhibits the highest capacity in commercial lithium-ion batteries (LIBs), and the high Ni content (80 %) provides the only route for high energy density. However, the cationic structure instability arisen from the increase of Ni content (>80 %) limits the further increase of the capacity, and inevitable O2 release related to anionic structure instability hinders the utilization of anion redox activity. Here, by comparing various combinations of high-entropy dopants substituted Co element, we propose a low-electronegativity cationic high-entropy doping strategy to fabricate the high-Ni Co-free layered cathode (LiNi0.8 Mn0.12 Al0.02 Ti0.02 Cr0.02 Fe0.02 O2 ) that exhibits much higher capacity and cycling stability. Configurational disorder originated from cationic high-entropy doping in transition metal (TM) layer, anchors the oxidized lattice oxygen ((O2 )n- ) to preserve high (O2 )n- content, triggering the anion redox activity. Electron transfer induced by applying TM dopants with lower electronegativity than that of Co element, increases the electron density of O in TM-O octahedron (TM-O6 ) configuration to reach higher (O2 )n- content, resulting in the higher anion redox activity. With exploring the stabilization effect on both cations and anions of high-entropy doping and low-electronegativity cationic modified anion redox activity, we propose an innovative and variable pathway for rationally tuning the properties of commercial cathodes.
RESUMEN
Syphilis, a sexually transmitted disease (STD) caused by Treponema pallidum (T. pallidum), has had a worldwide resurgence in recent years and remains a public health threat. As such, there has been a great deal of research into clinical strategies for the disease, including diagnostic biomarkers and possible strategies for treatment and prevention. Although serological testing remains the predominant laboratory diagnostic method for syphilis, it is worth noting that investigations pertaining to the DNA of T. pallidum, non-coding RNAs (ncRNAs), chemokines, and metabolites in peripheral blood, cerebrospinal fluid, and other bodily fluids have the potential to offer novel perspectives on the diagnosis of syphilis. In addition, the global spread of antibiotic resistance, such as macrolides and tetracyclines, has posed significant challenges for the treatment of syphilis. Fortunately, there is still no evidence of penicillin resistance. Hence, penicillin is the recommended course of treatment for syphilis, whereas doxycycline, tetracycline, ceftriaxone, and amoxicillin are viable alternative options. In recent years, efforts to discover a vaccine for syphilis have been reignited with better knowledge of the repertoire of T. pallidum outer membrane proteins (OMPs), which are the most probable syphilis vaccine candidates. However, research on therapeutic interventions and vaccine development for human subjects is limited due to practical and ethical considerations. Thus, the preclinical model is ideal for conducting research, and it plays an important role in clinical transformation. Different preclinical models have recently emerged, such as in vitro culture and mouse models, which will lay a solid foundation for clinical treatment and prevention of syphilis. This review aims to provide a comprehensive summary of the most recent syphilis tactics, including detection, drug resistance treatments, vaccine development, and preclinical models in clinical practice.
Asunto(s)
Sífilis , Vacunas , Animales , Ratones , Humanos , Sífilis/tratamiento farmacológico , Treponema pallidum , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Doxiciclina/uso terapéutico , Vacunas/uso terapéuticoRESUMEN
Prostate cancer (PCa) is the second most common cancer in males worldwide. The risk stratification of PCa is mainly based on morphological examination. Here we analyzed the proteome of 667 tumor samples from 487 Chinese PCa patients and characterized 9576 protein groups by PulseDIA mass spectrometry. Then we developed a pathway activity-based classifier concerning 13 proteins from seven pathways, and dichotomized the PCa patients into two subtypes, namely PPS1 and PPS2. PPS1 is featured with enhanced innate immunity, while PPS2 with suppressed innate immunity. This classifier exhibited a correlation with PCa progression in our cohort and was further validated by two published transcriptome datasets. Notably, PPS2 was significantly correlated with poor biochemical recurrence (BCR)/metastasis-free survival (log-rank P-value < 0.05). The PPS2 was also featured with cell proliferation activation. Together, our study presents a novel pathway activity-based stratification scheme for PCa.
RESUMEN
Pairwise learning is widely employed in ranking, similarity and metric learning, area under the ROC curve (AUC) maximization, and many other learning tasks involving sample pairs. Pairwise learning with deep neural networks was considered for ranking, but enough theoretical understanding about this topic is lacking. In this letter, we apply symmetric deep neural networks to pairwise learning for ranking with a hinge loss Ïh and carry out generalization analysis for this algorithm. A key step in our analysis is to characterize a function that minimizes the risk. This motivates us to first find the minimizer of Ïh-risk and then design our two-part deep neural networks with shared weights, which induces the antisymmetric property of the networks. We present convergence rates of the approximation error in terms of function smoothness and a noise condition and give an excess generalization error bound by means of properties of the hypothesis space generated by deep neural networks. Our analysis is based on tools from U-statistics and approximation theory.
RESUMEN
Prostate cancer is the most common cancer in males worldwide. Mass spectrometry-based targeted proteomics has demonstrated great potential in quantifying proteins from formalin-fixed paraffin-embedded (FFPE) and (fresh) frozen biopsy tissues. Here we provide a comprehensive tissue-specific spectral library for targeted proteomic analysis of prostate tissue samples. Benign and malignant FFPE prostate tissue samples were processed into peptide samples by pressure cycling technology (PCT)-assisted sample preparation, and fractionated with high-pH reversed phase liquid chromatography (RPLC). Based on data-dependent acquisition (DDA) MS analysis using a TripleTOF 6600, we built a library containing 108,533 precursors, 84,198 peptides and 9384 unique proteins (1% FDR). The applicability of the library was demonstrated in prostate specimens.
Asunto(s)
Neoplasias de la Próstata , Proteómica , Formaldehído/química , Humanos , Masculino , Espectrometría de Masas , Adhesión en Parafina , Proteínas , Proteómica/métodos , Fijación del TejidoRESUMEN
BACKGROUND: Glioblastoma (GBM) is the most malignant, aggressive and recurrent primary brain tumor. Cell senescence can cause irreversible cessation of cell division in normally proliferating cells. According to studies, senescence is a primary anti-tumor mechanism that may be seen in a variety of tumor types. It halts the growth and spread of tumors. Tumor suppressive functions held by cellular senescence provide new directions and pathways to promote cancer therapy. METHODS: We comprehensively analyzed the cell senescence-associated genes expression patterns. The potential molecular subtypes were acquired based on unsupervised cluster analysis. The tumor immune microenvironment (TME) variations, immune cell infiltration, and stemness index between 3 subtypes were analyzed. To identify genes linked with GBM prognosis and build a risk score model, we used weighted gene co-expression network analysis (WGCNA), univariate Cox regression, Least absolute shrinkage and selection operator regression (LASSO), and multivariate Cox regression analysis. And the correlation between risk scores and clinical traits, TME, GBM subtypes, as well as immunotherapy responses were estimated. Immunohistochemistry (IHC) and cellular experiments were performed to evaluate the expression and function of representative genes. Then the 2 risk scoring models were constructed based on the same method of calculation whose samples were acquired from the CGGA dataset and TCGA datasets to verify the rationality and the reliability of the risk scoring model. Finally, we conducted a pan-cancer analysis of the risk score, assessed drug sensitivity based on risk scores, and analyzed the pathways of sensitive drug action. RESULTS: The 3 potential molecular subtypes were acquired based on cell senescence-associated genes expression. The Log-rank test showed the difference in GBM patient survival between 3 potential molecular subtypes (P = 0.0027). Then, 11 cell senescence-associated genes were obtained to construct a risk-scoring model, which was systematically randomized to distinguish the train set (n = 293) and the test set (n = 292). The Kaplan-Meier (K-M) analyses indicated that the high-risk score in the train set (P < 0.0001), as well as the test set (P = 0.0053), corresponded with poorer survival. In addition, the high-risk score group showed a poor response to immunotherapy. The reliability and credibility of the risk scoring model were confirmed according to the CGGA dataset, TCGA datasets, and Pan-cancer analysis. According to drug sensitivity analysis, it was discovered that LJI308, a potent selective inhibitor of RSK pathways, has the highest drug sensitivity. Moreover, the GBM patients with higher risk scores may potentially be more beneficial from drugs that target cell cycle, mitosis, microtubule, DNA replication and apoptosis regulation signaling. CONCLUSION: We identified potential associations between clinical characteristics, TME, stemness, subtypes, and immunotherapy, and we clarified the therapeutic usefulness of cell senescence-associated genes.
RESUMEN
A Gram-negative, aerobic, chemoheterotrophic, rod-shaped, and motile bacterium, designated as LST-1T, was isolated from wild Stevia rebaudiana Bertoni and subjected to a polyphasic taxonomic analysis. The LST-1 strain grew optimally at 37 °C and pH 6.0-7.0 in the presence of 0.5% (w/v) NaCl. Phylogenetic analysis based on the 16S rDNA sequence indicated that LST-1 is closely related to Lelliottia jeotgali PFL01T (99.85%), Lelliottia nimipressuralis LMG10245T (98.82%), and Lelliottia amnigena LMG2784T (98.54%). Multi-locus sequence typing of concatenated partial atpD, infB, gyrB, and rpoB genes was performed to improve the resolution, and clear distinctions between the closest related type strains were observed. The results of average nucleotide identify analyses and DNA-DNA hybridization with four species (16S rDNA similarity > 98.65%) were less than 90 and 40%, respectively, verifying the distinct characteristics from other species of Lelliottia. The cellular fatty acid profile of the strain consisted of C16:0, Summed Feature3, and Summed Feature8 (possibly 16:1 w6c/16:1 w7c and 18:1 w6c) as major components. The major polar lipids included phosphatidylethanolamine, phosphatidylglycerol, an aminophospholipid, three non-characteristic phospholipids, and a non-characteristic lipid. The genome of LST-1T was 4,611,055 bp in size, with a G + C content of 55.02%. The unique combination of several phenotypic, chemotaxonomic, and genomic characteristics proved that strain LST-1T belongs to a novel species, for which the name Lelliottia steviae sp. nov. is proposed. The type strain is LST-1T (= CGMCC 1.19175T = JCM 34938T).Repositories: The genbank accession numbers for the 16S rRNA gene and genome sequences of strain LST-1T are MZ497264 and CP063663, respectively.
Asunto(s)
Stevia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Ribosómico , Ácidos Grasos/análisis , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Stevia/genéticaRESUMEN
Current standard-dose caffeine therapy results in significant intersubject variability. The aims of this study were to develop and evaluate population pharmacokinetic (PPK) models of caffeine in preterm infants through comprehensive screening of covariates and then to propose model-informed precision dosing of caffeine for this population. A total of 129 caffeine concentrations from 96 premature neonates were incorporated into this study. Comprehensive medical record and genotype data of these neonates were collected for analysis. PPK modeling was performed by a nonlinear mixed effects modeling program (NONMEM). Final models based on the current weight (CW) or body surface area (BSA) were evaluated via multiple graphic and statistical methods. The model-informed dosing regimen was performed through Monte Carlo simulations. In addition to CW or BSA, postnatal age, coadministration with erythromycin (ERY), and aryl hydrocarbon receptor coding gene (AHR) variant (rs2158041) were incorporated into the final PPK models. Multiple evaluation results showed satisfactory prediction performance and stability of the CW- and BSA-based models. Monte Carlo simulations demonstrated that trough concentrations of caffeine in preterm infants would be affected by concomitant ERY therapy and rs2158041 under varying dose regimens. For the first time, ERY and rs2158041 were found to be associated with the clearance of caffeine in premature infants. Similar predictive performance and stability were obtained for both CW- and BSA-based PPK models. These findings provide novel insights into caffeine precision therapy for preterm infants.
Asunto(s)
Apnea , Recien Nacido Prematuro , Apnea/tratamiento farmacológico , Cafeína , Eritromicina/uso terapéutico , Humanos , Lactante , Recién Nacido , Polimorfismo Genético , Receptores de Hidrocarburo de ArilRESUMEN
AIMS/HYPOTHESIS: MicroRNA-21 has been implicated in diabetic complication, including diabetic cardiomyopathy. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in diabetic cardiac fibrosis. The aim of this study was to investigate the role of miR-21-3p and its target androgen receptor in STZ-induced diabetic cardiac fibrosis. METHODS: The pathological changes and collagen depositions was analyzed by HE, Sirius Red staining and Masson's Trichrome Staining. MiR-21-3p, AR, NLRP3, caspase1 and collagen I expression were analyzed by western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, miR one step qRT-PCR, respectively. A luciferase reporter assay was used to verify the interaction between miR-21 and the 3' untranslated region (3'UTR) of AR. RESULTS: Our results indicated that miR-21-3p level was up-regulated, while AR was decreased in STZ-induced diabetic cardiac fibrosis tissues and cardiac fibroblast. High glucose triggers cardiac fibroblasts pyroptosis and collagen deposition. Gain-of-function and loss-of-function assays demonstrated that miR-21-3p mediated the crucial role in diabetic cardiac fibrosis. Our results show that miR-21-3p bound to the 3'UTR of AR post-transcriptionally repressed its expression. We also found AR, which regulates cardiac fibroblasts pyroptosis and collagen deposition through caspase1 signaling. CONCLUSIONS: /interpretation: Taken together, our study showed that miR-21-3p aggravates STZ-induced diabetic cardiac fibrosis through the caspase1 pathways by suppressing AR expression.
Asunto(s)
Cardiomiopatías Diabéticas/genética , Fibroblastos/fisiología , MicroARNs/fisiología , Miocardio/patología , Piroptosis/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Fibroblastos/patología , Fibrosis/genética , Masculino , MicroARNs/genética , Miocardio/metabolismo , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal/genética , EstreptozocinaRESUMEN
Recent studies show that intracellular accumulation of cholesterol leads to acquired resistance to gefitinib in non-small cell lung cancer (NSCLC) cells. In this study we investigated how to regulate the cholesterol levels in gefitinib-resistant NSCLC cells. We showed that intracellular cholesterol levels in gefitinib-resistant cell lines (PC-9/GR, H1975, H1650, and A549) were significantly higher than that in gefitinib-sensitive cell line (PC-9). Treatment with gefitinib (5 µM) significantly increased intracellular cholesterol levels in PC-9/GR, H1975, and H1650 cells. Gefitinib treatment downregulated the expression of PPARα, LXRα, and ABCA1, leading to dysregulation of cholesterol efflux pathway. We found that a lipid-lowering drug fenofibrate (20, 40 µM) dose-dependently increased the expression of PPARα, LXRα, and ABCA1, decreased the intracellular cholesterol levels, and enhanced the antiproliferative effects of gefitinib in PC-9/GR, H1975, and H1650 cells. We revealed that fenofibrate increased the gefitinib-induced apoptosis via regulating the key proteins involved in the intrinsic apoptosis pathway. In PC-9/GR, H1975 and H1650 cells, fenofibrate dose-dependently increased the expression of AMPK, FoxO1, and decreased the expression of AKT, which were remarkably weakened by knockdown of PPARα. In PC-9/GR cell xenograft mice, combined administration of gefitinib (25 mg · kg-1 · d-1) and fenofibrate (100 mg · kg-1 · d-1) caused remarkable inhibition on tumor growth as compared to treatment with either drug alone. All the results suggest that fenofibrate relieves acquired resistance to gefitinib in NSCLC by promoting apoptosis via regulating PPARα/AMPK/AKT/FoxO1 pathway. We propose that combination of gefitinib and fenofibrate is a potential strategy for overcoming the gefitinib resistance in NSCLC.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Fenofibrato/farmacología , Gefitinib/farmacología , Hipolipemiantes/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fenofibrato/química , Proteína Forkhead Box O1/metabolismo , Gefitinib/química , Humanos , Hipolipemiantes/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , PPAR alfa/agonistas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-ActividadRESUMEN
The maximum targeted capture silver from contaminated water is urgently necessary for sustainable development. Herein, the perfluorination conjugated microporous polymer adsorbent (F-CMP) has been fabricated by Sonogashira-Hagihara coupling reaction and employed to remove Ag(I) ions. Characterizations of NMR, XPS and FT-IR indicate the successful synthesis of F-CMP adsorbent. The influence factors of F-CMP on Ag(I) adsorption behavior are studied, and the adsorption capacity of Ag(I) reaches 251.3 mg/g. The experimental results of isothermal adsorption and kinetic adsorption are consistent with the Freundlich model and pseudo-second-order isothermal adsorption model, which follows a multilayer adsorption behavior on the uniform surface of the adsorbent, and the chemical adsorption becomes the main rate-limiting step. Combined with DFT calculation, the adsorption mechanism of Ag(I) by F-CMP is elucidated. The peaks shift of sp before and after adsorption is larger than that of F1s, suggesting that the -CC- on the F-CMP becomes the dominant chelation site of Ag(I). Furthermore, F-CMP exhibits specific adsorption for Ag(I) in polymetallic complex water, with the maximum selectivity coefficient of 31.5. Our study may provide a new possibility of perfluorinated CMPs for effective capture of Ag(I) ions to address environmental issues.
Asunto(s)
Polímeros , Contaminantes Químicos del Agua , Adsorción , Iones , Cinética , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/químicaRESUMEN
BACKGROUND: Agitation is common in subarachnoid hemorrhage (SAH), and sedation with midazolam, propofol and dexmedetomidine is essential in agitation management. Previous research shows the tendency of dexmedetomidine and propofol in improving long-term outcome of SAH patients, whereas midazolam might be detrimental. Brain metabolism derangement after SAH might be interfered by sedatives. However, how sedatives work and whether the drugs interfere with patient outcome by altering cerebral metabolism is unclear, and the comprehensive view of how sedatives regulate brain metabolism remains to be elucidated. METHODS: For cerebrospinal fluid (CSF) and extracellular space of the brain exchange instantly, we performed a cohort study, applying CSF of SAH patients utilizing different sedatives or no sedation to metabolomics. Baseline CSF metabolome was corrected by selecting patients of the same SAH and agitation severity. CSF components were analyzed to identify the most affected metabolic pathways and sensitive biomarkers of each sedative. Markers might represent the outcome of the patients were also investigated. RESULTS: Pentose phosphate pathway was the most significantly interfered (upregulated) pathway in midazolam (p = 0.0000107, impact = 0.35348) and propofol (p = 0.00000000000746, impact = 0.41604) groups. On the contrary, dexmedetomidine decreased levels of sedoheptulose 7-phosphate (p = 0.002) and NADP (p = 0.024), and NADP is the key metabolite and regulator in pentose phosphate pathway. Midazolam additionally augmented purine synthesis (p = 0.00175, impact = 0.13481) and propofol enhanced pyrimidine synthesis (p = 0.000203, impact = 0.20046), whereas dexmedetomidine weakened pyrimidine synthesis (p = 0.000000000594, impact = 0.24922). Reduced guanosine diphosphate (AUC of ROC 0.857, 95%CI 0.617-1, p = 0.00506) was the significant CSF biomarker for midazolam, and uridine diphosphate glucose (AUC of ROC 0.877, 95%CI 0.631-1, p = 0.00980) for propofol, and succinyl-CoA (AUC of ROC 0.923, 95%CI 0.785-1, p = 0.000810) plus adenosine triphosphate (AUC of ROC 0.908, 95%CI 0.6921, p = 0.00315) for dexmedetomidine. Down-regulated CSF succinyl-CoA was also associated with favorable outcome (AUC of ROC 0.708, 95% CI: 0.524-0.865, p = 0.029333). CONCLUSION: Pentose phosphate pathway was a crucial target for sedatives which alter brain metabolism. Midazolam and propofol enhanced the pentose phosphate pathway and nucleotide synthesis in poor-grade SAH patients, as presented in the CSF. The situation of dexmedetomidine was the opposite. The divergent modulation of cerebral metabolism might further explain sedative pharmacology and how sedatives affect the outcome of SAH patients.