Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38513237

RESUMEN

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Asunto(s)
Carnitina , Eritrocitos , Hemólisis , Carnitina/metabolismo , Humanos , Animales , Ratones , Eritrocitos/metabolismo , Polimorfismo de Nucleótido Simple , Envejecimiento Eritrocítico , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Conservación de la Sangre/métodos
2.
Am J Hematol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286963

RESUMEN

In children with sickle cell disease (SCD), splenectomy is immediately beneficial for acute sequestration crises and hypersplenism (ASSC/HyS) but portends a long-term risk of asplenia-related complications. We retrieved peripheral and splenic red blood cells (RBCs) from 17 SCD children/teenagers undergoing partial splenectomy for ASSC/HyS, 12 adult subjects without RBC-related disease undergoing splenectomy (controls), five human spleens perfused ex vivo with HbSS- and HbAA-RBC, and quantified abnormal RBC by microscopy, spleen-mimetic RBC filtration, and adhesion assays. Spleens were analyzed by immunohistochemistry and transmission electron microscopy (TEM). In circulating blood of SCD and control subjects, dysmorphic (elongated/spherocytic) RBCs were <2%, while proportions of pocked-RBC were 4.3-fold higher in SCD children than in controls. Compared to controls, splenic RBCs were more frequently dysmorphic (29.3% vs. 0.4%), stiffer (42.2% vs. 12.4%), and adherent (206 vs. 22 adherent RBC/area) in SCD subjects. By TEM, both polymer-containing and homogenous RBC contributed to spleen congestion, resulting in 3.8-fold higher RBC population density in SCD spleens than in control spleens, predominantly in the cords. Perfused spleens with normal function displayed similar congestion and retention of dysmorphic RBC as SCD spleens. The population density of active macrophages was similar in SCD and control spleens, with a relative deficit in phagocytosis of polymer-containing RBC. Despite the existence of hyposplenism, splenectomy in SCD children removes an organ that still efficiently filters out potentially pathogenic altered RBC. Innovative treatments allowing fine-tuned reduction of RBC retention would alleviate spleen congestion, the major pathogenic process in ASSC/HyS, while preserving spleen protective functions for the future.

3.
J Allergy Clin Immunol ; 151(6): 1595-1608.e6, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708814

RESUMEN

BACKGROUND: On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE: We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS: Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS: IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION: IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.


Asunto(s)
Aminopeptidasas , Citocinas , Ratones , Animales , Insulina , Mastocitos , Factor de Necrosis Tumoral alfa , Interleucina-6 , Inflamación
4.
Blood ; 137(15): 2090-2102, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33529321

RESUMEN

Friedreich ataxia (FRDA) is a frequent autosomal recessive disease caused by a GAA repeat expansion in the FXN gene encoding frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biogenesis. Resulting frataxin deficiency affects ISC-containing proteins and causes iron to accumulate in the brain and heart of FRDA patients. Here we report on abnormal cellular iron homeostasis in FRDA fibroblasts inducing a massive iron overload in cytosol and mitochondria. We observe membrane transferrin receptor 1 (TfR1) accumulation, increased TfR1 endocytosis, and delayed Tf recycling, ascribing this to impaired TfR1 palmitoylation. Frataxin deficiency is shown to reduce coenzyme A (CoA) availability for TfR1 palmitoylation. Finally, we demonstrate that artesunate, CoA, and dichloroacetate improve TfR1 palmitoylation and decrease iron overload, paving the road for evidence-based therapeutic strategies at the actionable level of TfR1 palmitoylation in FRDA.


Asunto(s)
Antígenos CD/metabolismo , Fibroblastos/patología , Ataxia de Friedreich/metabolismo , Sobrecarga de Hierro/metabolismo , Receptores de Transferrina/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Ataxia de Friedreich/complicaciones , Ataxia de Friedreich/patología , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/patología , Lipoilación , Mitocondrias/metabolismo , Mitocondrias/patología
5.
Blood ; 137(17): 2285-2298, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33657208

RESUMEN

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Animales , Transfusión de Eritrocitos , Cinética , Ratones , Esferocitos
6.
Am J Hematol ; 98(12): 1923-1933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792521

RESUMEN

Red blood cells (RBC) transfusion is used to alleviate symptoms and prevent complications in anemic patients by restoring oxygen delivery to tissues. RBC transfusion efficacy, that can be measured by a rise in hemoglobin (Hb) concentration, is influenced by donor-, product-, and recipient-related characteristics. In some studies, severe pre-transfusion anemia is associated with a greater than expected Hb increment following transfusion but the biological mechanism underpinning this relationship remains poorly understood. We conducted a prospective study in critically ill patients and quantified Hb increment following one RBC transfusion. In a murine model, we investigated the possibility that, in conjunction with the host erythropoietic response, the persistence of transfused donor RBC is improved to maintain a highest RBC biomass. We confirmed a correlation between a greater Hb increment and a deeper pre-transfusion anemia in a cohort of 17 patients. In the mouse model, Hb increment and post-transfusion recovery were increased in anemic recipients. Post-transfusion RBC recovery was improved in hypoxic mice or those receiving an erythropoiesis-stimulating agent and decreased in those treated with erythropoietin (EPO)-neutralizing antibodies, suggesting that EPO signaling is necessary to observe this effect. Irradiated recipients also showed decreased post-transfusion RBC recovery. The EPO-induced post-transfusion RBC recovery improvement was abrogated in irradiated or in macrophage-depleted recipients, but maintained in splenectomized recipients, suggesting a mechanism requiring erythroid progenitors and macrophages, but which is not spleen-specific. Our study highlights a physiological role of EPO in downregulating post-transfusion RBC clearance, contributing to maintain a vital RBC biomass to rapidly cope with hypoxemia.


Asunto(s)
Anemia , Eritropoyetina , Humanos , Animales , Ratones , Estudios Prospectivos , Anemia/tratamiento farmacológico , Anemia/etiología , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Eritropoyesis/fisiología , Eritrocitos
7.
Gut ; 71(3): 497-508, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33579790

RESUMEN

OBJECTIVE: Enteropathy-associated T-cell lymphoma (EATL) is a rare but severe complication of coeliac disease (CeD), often preceded by low-grade clonal intraepithelial lymphoproliferation, referred to as type II refractory CeD (RCDII). Knowledge on underlying oncogenic mechanisms remains scarce. Here, we analysed and compared the mutational landscape of RCDII and EATL in order to identify genetic drivers of CeD-associated lymphomagenesis. DESIGN: Pure populations of RCDII-cells derived from intestinal biopsies (n=9) or sorted from blood (n=2) were analysed by whole exome sequencing, comparative genomic hybridisation and RNA sequencing. Biopsies from RCDII (n=50), EATL (n=19), type I refractory CeD (n=7) and uncomplicated CeD (n=18) were analysed by targeted next-generation sequencing. Moreover, functional in vitro studies and drug testing were performed in RCDII-derived cell lines. RESULTS: 80% of RCDII and 90% of EATL displayed somatic gain-of-functions mutations in the JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase domain in approximately 50% of cases. Other recurrent somatic events were deleterious mutations in nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) regulators TNFAIP3 and TNIP3 and potentially oncogenic mutations in TET2, KMT2D and DDX3X. JAK1 inhibitors, and the proteasome inhibitor bortezomib could block survival and proliferation of malignant RCDII-cell lines. CONCLUSION: Mutations activating the JAK1-STAT3 pathway appear to be the main drivers of CeD-associated lymphomagenesis. In concert with mutations in negative regulators of NF-κB, they may favour the clonal emergence of malignant lymphocytes in the cytokine-rich coeliac intestine. The identified mutations are attractive therapeutic targets to treat RCDII and block progression towards EATL.


Asunto(s)
Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/genética , Linfoma de Células T Asociado a Enteropatía/etiología , Mutación con Ganancia de Función/genética , Linfocitos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad Celíaca/patología , Estudios de Cohortes , Linfoma de Células T Asociado a Enteropatía/patología , Femenino , Francia , Humanos , Janus Quinasa 1/genética , Masculino , Persona de Mediana Edad , Factor de Transcripción STAT3/genética , Adulto Joven
8.
J Cell Sci ; 133(5)2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32079661

RESUMEN

Toll-like receptor 7 (TLR7) is an endosomal receptor that recognizes single-stranded RNA from viruses. Its trafficking and activation is regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 and lysosomal proteases. UNC93B1 also modulates major histocompatibility complex class II (MHCII) antigen presentation, and deficiency in MHCII protein diminishes TLR9 signaling. These results indicate a link between proteins that regulate both innate and adaptive responses. Here, we report that TLR7 resides in lysosomes and interacts with the MHCII-chaperone molecule, the invariant chain (Ii) or CD74, in B cells. In the absence of CD74, TLR7 displays both ER and lysosomal localization, leading to an increase in pro-inflammatory cytokine production. Furthermore, stimulation with TLR7 but not TLR9, is inefficient in boosting antigen presentation in Ii-deficient cells. In contrast, in B cells lacking TLR7 or mutated for UNC93B1, which are able to trigger TLR7 activation, antigen presentation is enhanced. This suggests that TLR7 signaling in B cells is controlled by the Ii chain.


Asunto(s)
Proteínas de Transporte de Membrana , Receptor Toll-Like 7 , Antígenos de Diferenciación de Linfocitos B/genética , Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
9.
Haematologica ; 107(1): 167-177, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406813

RESUMEN

Erythroblast maturation in mammals is dependent on organelle clearance throughout terminal erythropoiesis. We studied the role of the outer mitochondrial membrane protein voltage-dependent anion channel-1 (VDAC1) in human terminal erythropoiesis. We show that short hairpin (shRNA)-mediated downregulation of VDAC1 accelerates erythroblast maturation. Thereafter, erythroblasts are blocked at the orthochromatic stage, exhibiting a significant decreased level of enucleation, concomitant with an increased cell death. We demonstrate that mitochondria clearance starts at the transition from basophilic to polychromatic erythroblast, and that VDAC1 downregulation induces the mitochondrial retention. In damaged mitochondria from non-erythroid cells, VDAC1 was identified as a target for Parkin-mediated ubiquitination to recruit the phagophore. Here, we showed that VDAC1 is involved in phagophore's membrane recruitment regulating selective mitophagy of still functional mitochondria from human erythroblasts. These findings demonstrate for the first time a crucial role for VDAC1 in human erythroblast terminal differentiation, regulating mitochondria clearance.


Asunto(s)
Mitocondrias , Mitofagia , Animales , Apoptosis , Diferenciación Celular , Eritroblastos/metabolismo , Eritropoyesis , Humanos , Mamíferos , Mitocondrias/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012667

RESUMEN

Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom- clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition.


Asunto(s)
Desequilibrio Ácido-Base , Conexinas , Eritrocitos , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Desequilibrio Ácido-Base/metabolismo , Adenosina Trifosfato/metabolismo , Anemia Hemolítica Congénita , Conexinas/metabolismo , Eritrocitos/metabolismo , Eritrocitos Anormales/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Errores Innatos del Metabolismo , Proteínas del Tejido Nervioso/metabolismo
11.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886988

RESUMEN

Gaucher disease (GD) is caused by glucocerebrosidase deficiency leading to the accumulation of sphingolipids in macrophages named "Gaucher's Cells". These cells are characterized by deregulated expression of cell surface markers, abnormal secretion of inflammatory cytokines, and iron sequestration. These cells are known to infiltrate tissues resulting in hematological manifestations, splenomegaly, and bone diseases. We have already demonstrated that Gaucher red blood cells exhibit altered properties suggesting their key role in GD clinical manifestations. We hypothesized that Gaucher's erythrocytes could be prone to premature destruction by macrophages contributing to the formation of altered macrophages and Gaucher-like cells. We conducted in vitro experiments of erythrophagocytosis using erythrocytes from Gaucher's patients or healthy donors. Our results showed an enhanced erythrophagocytosis of Gaucher red blood cells compared to healthy red blood cells, which is related to erythrocyte sphingolipids overload and reduced deformability. Importantly, we showed elevated expression of the antigen-presenting molecules CD1d and MHC-II and of the iron-regulator hepcidin in macrophages, as well as enhanced secretion of the pro-inflammatory cytokine IL-1ß after phagocytosis of GD erythrocytes. These results strongly suggested that erythrophagocytosis in GD contribute to phenotypic modifications in macrophages. This present study shows that erythrocytes-macrophages interactions may be crucial in GD pathophysiology and pathogenesis.


Asunto(s)
Enfermedad de Gaucher , Citocinas/metabolismo , Eritrocitos/metabolismo , Enfermedad de Gaucher/patología , Humanos , Hierro/metabolismo , Macrófagos/metabolismo , Fagocitosis/fisiología , Esfingolípidos/metabolismo
12.
Am J Hum Genet ; 102(2): 266-277, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395073

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.


Asunto(s)
Encéfalo/patología , Endocitosis , Hierro/metabolismo , Lipoilación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores de Transferrina/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Receptores de Transferrina/química , Receptores de Transferrina/genética , Transferrina/metabolismo
13.
Haematologica ; 106(10): 2707-2719, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32855279

RESUMEN

While ineffective erythropoiesis has long been recognized as a key contributor to anemia in thalassemia, its role in anemia of sickle cell disease (SCD) has not been critically explored. Using in vitro and in vivo derived human erythroblasts we assessed the extent of ineffective erythropoiesis in SCD. Modeling the bone marrow hypoxic environment, we found that hypoxia induces death of sickle erythroblasts starting at the polychromatic stage, positively selecting cells with high levels of fetal hemoglobin (HbF). Cell death was associated with cytoplasmic sequestration of heat shock protein 70 and was rescued by induction of HbF synthesis. Importantly, we document that in the bone marrow of SCD patients similar cell loss occurs during the final stages of terminal differentiation. Our study provides evidence for ineffective erythropoiesis in SCD and highlights an anti-apoptotic role for HbF during the terminal stages of erythroid differentiation. These findings imply that the beneficial effect on anemia of increased HbF levels is not only due to the increased life span of red cells but also a consequence of decreased ineffective erythropoiesis.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Eritroblastos , Eritrocitos , Eritropoyesis , Humanos
14.
Haematologica ; 106(9): 2478-2488, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32855277

RESUMEN

Vaso-occlusive crises are the hallmark of sickle cell disease (SCD). They are believed to occur in two steps, starting with adhesion of deformable low-dense red blood cells (RBCs), or other blood cells such as neutrophils, to the wall of post-capillary venules, followed by trapping of the denser RBCs or leukocytes in the areas of adhesion because of reduced effective lumen-diameter. In SCD, RBCs are heterogeneous in terms of density, shape, deformability and surface proteins, which accounts for the differences observed in their adhesion and resistance to shear stress. Sickle RBCs exhibit abnormal adhesion to laminin mediated by Lu/BCAM protein at their surface. This adhesion is triggered by Lu/BCAM phosphorylation in reticulocytes but such phosphorylation does not occur in mature dense RBCs despite firm adhesion to laminin. In this study, we investigated the adhesive properties of sickle RBC subpopulations and addressed the molecular mechanism responsible for the increased adhesion of dense RBCs to laminin in the absence of Lu/BCAM phosphorylation. We provide evidence for the implication of oxidative stress in post-translational modifications of Lu/BCAM that impact its distribution and cis-interaction with glycophorin C at the cell surface activating its adhesive function in sickle dense RBCs.


Asunto(s)
Anemia de Células Falciformes , Laminina , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Eritrocitos/metabolismo , Humanos , Laminina/metabolismo , Sistema del Grupo Sanguíneo Lutheran/metabolismo , Estrés Oxidativo
15.
Transfusion ; 61(3): 903-918, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33381865

RESUMEN

BACKGROUND: Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS: Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS: Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION: Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.


Asunto(s)
Adenosina Trifosfato/metabolismo , Deformación Eritrocítica/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Adenina/farmacología , Bancos de Sangre , Conservación de la Sangre , Criopreservación , Células Endoteliales/metabolismo , Eritrocitos/citología , Citometría de Flujo , Hemólisis , Humanos , Inosina/farmacología , Fosfatidilserinas/metabolismo , Rejuvenecimiento/fisiología , Factores de Tiempo
16.
Am J Transplant ; 20(8): 2243-2253, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32065452

RESUMEN

Acute graft-versus-host disease (GVHD) is a rare but frequently lethal complication after solid organ transplantation. GVHD occurs in unduly immunocompromised hosts but requires the escalation of immunosuppression, which does not discriminate between host and donor cells. In contrast, donor-targeted therapy would ideally mitigate graft-versus-host reactivity while sparing recipient immune functions. We report two children with end-stage renal disease and severe primary immune deficiency (Schimke syndrome) who developed severe steroid-resistant acute GVHD along with full and sustained donor T cell chimerism after isolated kidney transplantation. Facing a therapeutic dead end, we used a novel strategy based on the adoptive transfer of anti-HLA donor-specific antibodies (DSAs) through the transfusion of highly selected plasma. After approval by the appropriate regulatory authority, an urgent nationwide search was launched among more than 3800 registered blood donors with known anti-HLA sensitization. Adoptively transferred DSAs bound to and selectively depleted circulating donor T cells. The administration of DSA-rich plasma was well tolerated and notably did not induce antibody-mediated rejection of the renal allografts. Acute GVHD symptoms promptly resolved in one child. This report provides a proof of concept for a highly targeted novel therapeutic approach for solid organ transplantation-associated GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Riñón , Niño , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunización Pasiva , Trasplante de Riñón/efectos adversos , Esteroides , Acondicionamiento Pretrasplante
17.
Haematologica ; 105(9): 2240-2249, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054049

RESUMEN

ß-thalassemia major (ß-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human ß-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of ß-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of ß-TM.


Asunto(s)
Carioferinas , Receptores Citoplasmáticos y Nucleares , Talasemia beta , Diferenciación Celular , Eritroblastos , Eritropoyesis , Humanos , Carioferinas/genética , Receptores Citoplasmáticos y Nucleares/genética , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Proteína Exportina 1
18.
Nature ; 514(7521): 242-6, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25156257

RESUMEN

ß-Thalassaemia major (ß-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing ß-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human ß-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of ß-TM erythroblasts, which may provide a rationale for new targeted therapies of ß-TM.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Proteínas HSP70 de Choque Térmico/metabolismo , Globinas alfa/metabolismo , Talasemia beta/sangre , Talasemia beta/metabolismo , Apoptosis , Médula Ósea/metabolismo , Caspasa 3/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular/genética , Células Cultivadas , Citoplasma/metabolismo , Activación Enzimática , Eritroblastos/citología , Eritroblastos/patología , Eritropoyesis/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Humanos , Cinética , Terapia Molecular Dirigida , Unión Proteica , Replegamiento Proteico , Talasemia beta/patología
20.
J Am Soc Nephrol ; 28(12): 3605-3615, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28784700

RESUMEN

Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients (n=169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF-κB and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants.


Asunto(s)
Hierro/sangre , Riñón/patología , Daño por Reperfusión/prevención & control , Adulto , Aloinjertos , Animales , Antioxidantes/metabolismo , Femenino , Ferritinas/sangre , Tasa de Filtración Glomerular , Humanos , Inflamación , Hierro/química , Riñón/metabolismo , Trasplante de Riñón , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/citología , Factor 2 Relacionado con NF-E2/metabolismo , Peritonitis/metabolismo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA