Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754048

RESUMEN

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genética
2.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36610399

RESUMEN

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Asunto(s)
Envejecimiento , Retrovirus Endógenos , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/patología , Senescencia Celular , Retrovirus Endógenos/genética , Primates
3.
Cell ; 180(5): 984-1001.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109414

RESUMEN

Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.


Asunto(s)
Envejecimiento/genética , Restricción Calórica , Sistema Inmunológico/metabolismo , Transcriptoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratas , Análisis de la Célula Individual
4.
Cell ; 180(3): 585-600.e19, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004457

RESUMEN

Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.


Asunto(s)
Envejecimiento/genética , Ovario/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma , Anciano , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Atlas como Asunto , Biomarcadores , Línea Celular Tumoral , Femenino , Células de la Granulosa/metabolismo , Humanos , Macaca fascicularis , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
5.
Cell ; 171(7): 1495-1507.e15, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29224783

RESUMEN

Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable target gene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Marcación de Gen/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Utrofina/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Distrofina/genética , Interleucina-10/genética , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Activación Transcripcional
6.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129541

RESUMEN

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Asunto(s)
Quimerismo , Edición Génica , Mamíferos/embriología , Animales , Blastocisto , Sistemas CRISPR-Cas , Bovinos , Embrión de Mamíferos/citología , Femenino , Humanos , Masculino , Mamíferos/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Pluripotentes , Ratas , Ratas Sprague-Dawley , Sus scrofa
8.
Cell ; 161(3): 459-469, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910206

RESUMEN

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Asunto(s)
Marcación de Gen , Enfermedades Mitocondriales/genética , Animales , Fusión Celular , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Enfermedades Mitocondriales/prevención & control , Mutación , Oocitos/metabolismo
9.
Nature ; 540(7631): 144-149, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27851729

RESUMEN

Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Marcación de Gen/métodos , Genoma/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , División Celular , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Terapia Genética/métodos , Neuronas/citología , Neuronas/metabolismo , Ratas , Homología de Secuencia
10.
Nature ; 521(7552): 316-21, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25945737

RESUMEN

Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.


Asunto(s)
Quimera , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Células Madre Embrionarias/citología , Femenino , Estratos Germinativos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Pan troglodytes , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa , Especificidad de la Especie
11.
Nature ; 491(7425): 603-7, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23075850

RESUMEN

Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.


Asunto(s)
Proteínas Mutantes/metabolismo , Células-Madre Neurales/patología , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Diferenciación Celular , División Celular , Línea Celular , Células Clonales/metabolismo , Células Clonales/patología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Técnicas de Sustitución del Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Proteínas Mutantes/genética , Mutación , Células-Madre Neurales/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico
12.
Circulation ; 131(14): 1278-1290, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25739401

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here, we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development. METHODS AND RESULTS: By relying on human pluripotent stem cell differentiation models, we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells. RNA sequencing led to the generation of large data sets that serve as a gene expression roadmap highlighting gene expression changes during human pluripotent cell differentiation. Stage-specific analyses led to the identification of 3 previously uncharacterized lncRNAs, TERMINATOR, ALIEN, and PUNISHER, specifically expressed in undifferentiated pluripotent stem cells, cardiovascular progenitors, and differentiated endothelial cells, respectively. Functional characterization, including localization studies, dynamic expression analyses, epigenetic modification monitoring, and knockdown experiments in lower vertebrates, as well as murine embryos and human cells, confirmed a critical role for each lncRNA specific for each analyzed developmental stage. CONCLUSIONS: We have identified and functionally characterized 3 novel lncRNAs involved in vertebrate and human cardiovascular development, and we provide a comprehensive transcriptomic roadmap that sheds new light on the molecular mechanisms underlying human embryonic development, mesodermal commitment, and cardiovascular specification.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Células Endoteliales/química , Regulación del Desarrollo de la Expresión Génica/genética , Miocitos Cardíacos/química , Células Madre Pluripotentes/química , ARN Largo no Codificante/aislamiento & purificación , Vertebrados/genética , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular , Linaje de la Célula , Mapeo Cromosómico , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Corazón Fetal/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Datos de Secuencia Molecular , Morfolinos/farmacocinética , Miocitos Cardíacos/citología , ARN Largo no Codificante/fisiología , Análisis de Secuencia de ARN , Transcriptoma , Vertebrados/crecimiento & desarrollo , Pez Cebra/embriología
13.
Cell Stem Cell ; 30(11): 1452-1471.e10, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37832549

RESUMEN

Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Rejuvenecimiento , Humanos , Ratones , Animales , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Senescencia Celular/genética , Factores de Transcripción/genética , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo
14.
Innovation (Camb) ; 4(1): 100380, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36747595

RESUMEN

Exercise benefits the whole organism, yet, how tissues across the body orchestrally respond to exercise remains enigmatic. Here, in young and old mice, with or without exercise, and exposed to infectious injury, we characterized the phenotypic and molecular adaptations to a 12-month exercise across 14 tissues/organs at single-cell resolution. Overall, exercise protects tissues from infectious injury, although more effectively in young animals, and benefits aged individuals in terms of inflammaging suppression and tissue rejuvenation, with structural improvement in the central nervous system and systemic vasculature being the most prominent. In vascular endothelial cells, we found that readjusting the rhythmic machinery via the core circadian clock protein BMAL1 delayed senescence and facilitated recovery from infectious damage, recapitulating the beneficial effects of exercise. Our study underscores the effect of exercise in reconstituting the youthful circadian clock network and provides a foundation for further investigating the interplay between exercise, aging, and immune challenges across the whole organism.

15.
Nat Aging ; 3(10): 1269-1287, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783815

RESUMEN

Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2-STAT3-CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases.


Asunto(s)
Proteómica , Sirtuina 2 , Humanos , Ratones , Animales , Anciano , Envejecimiento/genética , Miocitos Cardíacos/metabolismo , Primates/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Transcripción STAT3/genética
16.
Nat Commun ; 13(1): 3646, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752626

RESUMEN

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.


Asunto(s)
Proteína del Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Empalme Alternativo , Núcleo Celular/metabolismo , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
17.
Nat Aging ; 2(3): 243-253, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118377

RESUMEN

Partial reprogramming by expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) for short periods of time restores a youthful epigenetic signature to aging cells and extends the life span of a premature aging mouse model. However, the effects of longer-term partial reprogramming in physiologically aging wild-type mice are unknown. Here, we performed various long-term partial reprogramming regimens, including different onset timings, during physiological aging. Long-term partial reprogramming lead to rejuvenating effects in different tissues, such as the kidney and skin, and at the organismal level; duration of the treatment determined the extent of the beneficial effects. The rejuvenating effects were associated with a reversion of the epigenetic clock and metabolic and transcriptomic changes, including reduced expression of genes involved in the inflammation, senescence and stress response pathways. Overall, our observations indicate that partial reprogramming protocols can be designed to be safe and effective in preventing age-related physiological changes. We further conclude that longer-term partial reprogramming regimens are more effective in delaying aging phenotypes than short-term reprogramming.


Asunto(s)
Envejecimiento Prematuro , Reprogramación Celular , Animales , Ratones , Reprogramación Celular/genética , Envejecimiento/genética , Senescencia Celular , Envejecimiento Prematuro/genética , Modelos Animales de Enfermedad
18.
Cell Rep ; 39(4): 110730, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476977

RESUMEN

Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.


Asunto(s)
Reprogramación Celular , Hígado , Animales , Desdiferenciación Celular , Hepatocitos/metabolismo , Hígado/metabolismo , Regeneración Hepática , Mamíferos , Ratones
19.
BMC Biotechnol ; 11: 5, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21235743

RESUMEN

BACKGROUND: A promoter capable of driving high-level transgene expression in oviduct cells is important for developing transgenic chickens capable of producing therapeutic proteins, including monoclonal antibodies (mAbs), in the whites of laid eggs. Ovalbumin promoters can be used as oviduct-specific regulatory sequences in transgenic chickens, but their promoter activities are not high, according to previous reports. RESULTS: In this study, while using a previously characterized ovalbumin promoter, we attempted to improve the expression level of mAbs using a Cre/loxP-mediated conditional excision system. We constructed a therapeutic mAb expression vector, pBS-DS-hIgG, driven by the CMV and CAG promoters, in which the expression of the heavy and light chains of humanized immunoglobulin G (hIgG) is preceded by two floxed stuffer reporter genes. In the presence of Cre, the stuffer genes were precisely excised and hIgG expression was induced in pBS-DS-hIgG-transfected 293T cells. In chicken oviduct primary culture cells, hIgG was expressed after transfection of pBS-DS-hIgG together with the ovalbumin promoter-driven Cre expression vector. The expression level of hIgG in these cells was increased 40-fold over that induced directly by the ovalbumin promoter. On the other hand, hIgG was not induced by the ovalbumin promoter-driven Cre in chicken embryonic fibroblast cells. CONCLUSIONS: The Cre/loxP-based system could significantly increase ovalbumin promoter-driven production of proteins of interest, specifically in oviduct cells. This expression system could be useful for producing therapeutic mAbs at high level using transgenic chickens as bioreactors.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Ovalbúmina/genética , Oviductos/fisiología , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Línea Celular , Células Cultivadas , Pollos , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Integrasas/genética , Oviductos/citología , Oviductos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Nat Cell Biol ; 5(6): 513-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12766772

RESUMEN

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.


Asunto(s)
Extremidades/embriología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Animales , Apoptosis , Embrión de Pollo , Fosfatasa 6 de Especificidad Dual , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Activación Enzimática , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Sistema de Señalización de MAP Quinasas , Ratones , Datos de Secuencia Molecular , Morfogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA