Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cell ; 157(3): 539-48, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766804

RESUMEN

All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally induced persistence. In several different organisms, toxin-antitoxin modules function as effectors of ppGpp-induced persistence.


Asunto(s)
Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Guanosina Tetrafosfato/metabolismo , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hongos/efectos de los fármacos , Transducción de Señal
3.
Cell ; 154(5): 1140-1150, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993101

RESUMEN

Persistence refers to the phenomenon in which isogenic populations of antibiotic-sensitive bacteria produce rare cells that transiently become multidrug tolerant. Whether slow growth in a rare subset of cells underlies the persistence phenotype has not be examined in wild-type bacteria. Here, we show that an exponentially growing population of wild-type Escherichia coli cells produces rare cells that stochastically switch into slow growth, that the slow-growing cells are multidrug tolerant, and that they are able to resuscitate. The persistence phenotype depends hierarchically on the signaling nucleotide (p)ppGpp, Lon protease, inorganic polyphosphate, and toxin-antitoxins. We show that the level of (p)ppGpp varies stochastically in a population of exponentially growing cells and that the high (p)ppGpp level in rare cells induces slow growth and persistence. (p)ppGpp triggers slow growth by activating toxin-antitoxin loci through a regulatory cascade depending on inorganic polyphosphate and Lon protease.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Polifosfatos/metabolismo , Proteasa La/metabolismo , Transcripción Genética
4.
Mol Cell ; 74(6): 1239-1249.e4, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31023582

RESUMEN

The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , N-Glicosil Hidrolasas/química , Regulación Alostérica , Secuencia de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Modelos Moleculares , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Especificidad por Sustrato
5.
Annu Rev Genet ; 52: 321-348, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30476446

RESUMEN

Protein synthesis consumes a large fraction of available resources in the cell. When bacteria encounter unfavorable conditions and cease to grow, specialized mechanisms are in place to ensure the overall reduction of costly protein synthesis while maintaining a basal level of translation. A number of ribosome-associated factors are involved in this regulation; some confer an inactive, hibernating state of the ribosome in the form of 70S monomers (RaiA; this and the following are based on Escherichia coli nomenclature) or 100S dimers (RMF and HPF homologs), and others inhibit translation at different stages in the translation cycle (RsfS, YqjD and paralogs, SRA, and EttA). Stationary phase cells therefore exhibit a complex array of different ribosome subpopulations that adjusts the translational capacity of the cell to the encountered conditions and ensures efficient reactivation of translation when conditions improve. Here, we review the current state of research regarding stationary phase-specific translation factors, in particular ribosome hibernation factors and other forms of translational regulation in response to stress conditions.


Asunto(s)
Escherichia coli/genética , Hibernación/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Escherichia coli/genética , Unión Proteica , Proteínas Ribosómicas/genética , Ribosomas/metabolismo
6.
Mol Cell ; 70(5): 768-784, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29398446

RESUMEN

Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules.


Asunto(s)
Antitoxinas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , Antitoxinas/química , Antitoxinas/genética , Bacterias/genética , Bacterias/inmunología , Bacterias/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Inmunidad Innata , Viabilidad Microbiana , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , Relación Estructura-Actividad , Transcripción Genética
7.
Mol Cell ; 70(1): 95-105.e4, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625042

RESUMEN

RelA/SpoT homologs (RSHs) are ubiquitous bacterial enzymes that synthesize and hydrolyze (p)ppGpp in response to environmental challenges. Bacteria cannot survive in hosts and produce infection without activating the (p)ppGpp-mediated stringent response, but it is not yet understood how the enzymatic activities of RSHs are controlled. Using UV crosslinking and deep sequencing, we show that Escherichia coli RelA ((p)ppGpp synthetase I) interacts with uncharged tRNA without being activated. Amino acid starvation leads to loading of cognate tRNA⋅RelA complexes at vacant ribosomal A-sites. In turn, RelA is activated and synthesizes (p)ppGpp. Mutation of a single, conserved residue in RelA simultaneously prevents tRNA binding, ribosome binding, and activation of RelA, showing that all three processes are interdependent. Our results support a model in which (p)ppGpp synthesis occurs by ribosome-bound RelA interacting with the Sarcin-Ricin loop of 23S rRNA.


Asunto(s)
Escherichia coli K12/enzimología , Guanosina Tetrafosfato/biosíntesis , Ligasas/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/enzimología , Aminoácidos/deficiencia , Sitios de Unión , Escherichia coli K12/genética , Ligasas/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/genética , ARN Ribosómico 23S/genética , ARN de Transferencia/genética , Ribosomas/genética
8.
Cell ; 141(6): 927-42, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20550930

RESUMEN

In prokaryotes, DNA can be segregated by three different types of cytoskeletal filaments. The best-understood type of partitioning (par) locus encodes an actin homolog called ParM, which forms dynamically unstable filaments that push plasmids apart in a process reminiscent of mitosis. However, the most common type of par locus, which is present on many plasmids and most bacterial chromosomes, encodes a P loop ATPase (ParA) that distributes plasmids equidistant from one another on the bacterial nucleoid. A third type of par locus encodes a tubulin homolog (TubZ) that forms cytoskeletal filaments that move rapidly with treadmill dynamics.


Asunto(s)
Bacterias/metabolismo , ADN Bacteriano/metabolismo , Actinas/metabolismo , Bacterias/citología , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Plásmidos/metabolismo , Tubulina (Proteína)/metabolismo
9.
Cell ; 139(6): 1084-95, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005802

RESUMEN

Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 A) and bound to programmed Thermus thermophilus 70S ribosomes before (3.3 A) and after (3.6 A) cleavage. RelE occupies the A site and causes cleavage of mRNA after the second nucleotide of the codon by reorienting and activating the mRNA for 2'-OH-induced hydrolysis. Stacking of A site codon bases with conserved residues in RelE and 16S rRNA explains the requirement for the ribosome in catalysis and the subtle sequence specificity of the reaction. These structures provide detailed insight into the translational regulation on the bacterial ribosome by mRNA cleavage.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , ARN Ribosómico 16S/metabolismo , Ribosomas/química , Thermus thermophilus/metabolismo
10.
Mol Cell ; 64(6): 1020-1021, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984742

RESUMEN

In this issue of Molecular Cell, Jankevicius et al. (2016) characterize the DarTG toxin-antitoxin module in which the DarT toxin ADP-ribosylates single-stranded DNA and the DarG antitoxin counteracts DarT by direct binding and by enzymatic removal of the ADP-ribosylation.


Asunto(s)
Antitoxinas , ADN de Cadena Simple , Adenosina Difosfato , Adenosina Difosfato Ribosa , Toxina de Adenilato Ciclasa , ADN , Humanos
11.
Mol Cell ; 59(1): 1-3, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140365

RESUMEN

In this issue of Molecular Cell, Verstraeten et al. (2015) demonstrate that the conserved GTPase Obg and the second messenger ppGpp mediate persistence by activation of a type I toxin-antitoxin module (hokB/sokB) in E. coli.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/biosíntesis , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Proteínas de Unión al GTP/genética , Pseudomonas aeruginosa/genética
12.
Nucleic Acids Res ; 49(4): 2226-2239, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503254

RESUMEN

Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3'-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Ribonucleasas/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Carbono/fisiología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Mutación , Biosíntesis de Proteínas , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/genética , Estrés Fisiológico/genética
13.
Nucleic Acids Res ; 48(8): 4357-4370, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32232417

RESUMEN

The Klebsiella pneumoniae species complex includes important opportunistic pathogens which have become public health priorities linked to major hospital outbreaks and the recent emergence of multidrug-resistant hypervirulent strains. Bacterial virulence and the spread of multidrug resistance have previously been linked to toxin-antitoxin (TA) systems. TA systems encode a toxin that disrupts essential cellular processes, and a cognate antitoxin which counteracts this activity. Whilst associated with the maintenance of plasmids, they also act in bacterial immunity and antibiotic tolerance. However, the evolutionary dynamics and distribution of TA systems in clinical pathogens are not well understood. Here, we present a comprehensive survey and description of the diversity of TA systems in 259 clinically relevant genomes of K. pneumoniae. We show that TA systems are highly prevalent with a median of 20 loci per strain. Importantly, these toxins differ substantially in their distribution patterns and in their range of cognate antitoxins. Classification along these properties suggests different roles of TA systems and highlights the association and co-evolution of toxins and antitoxins.


Asunto(s)
Evolución Molecular , Klebsiella pneumoniae/genética , Sistemas Toxina-Antitoxina/genética , Simulación por Computador , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Fenotipo , Factores de Virulencia/genética
14.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095282

RESUMEN

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacilación , Antibacterianos/farmacología , Sitios de Unión/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
15.
Nucleic Acids Res ; 47(14): 7690-7702, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31260525

RESUMEN

Bacterial toxin-antitoxin pairs play important roles in bacterial multidrug tolerance. Gcn5-related N-acetyltransferase (GNAT) toxins inhibit translation by acetylation of aminoacyl-tRNAs and are counteracted by direct contacts with cognate ribbon-helix-helix (RHH) antitoxins. Our previous analysis showed that the GNAT toxin KacT and RHH antitoxin KacA of Klebsiella pneumoniae form a heterohexamer in solution and that the complex interacts with the cognate promoter DNA, resulting in negative autoregulation of kacAT transcription. Here, we present the crystal structure of DNA-bound KacAT complex at 2.2 Å resolution. The crystal structure revealed the formation of a unique heterohexamer, KacT-KacA2-KacA2-KacT. The direct interaction of KacA and KacT involves a unique W-shaped structure with the two KacT molecules at opposite ends. Inhibition of KacT is achieved by the binding of four KacA proteins that preclude the formation of an active KacT dimer. The kacAT operon is auto-regulated and we present an experimentally supported molecular model proposing that the KacT:KacA ratio controls kacAT transcription by conditional cooperativity. These results yield a profound understanding of how transcription GNAT-RHH pairs are regulated.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Klebsiella pneumoniae/genética , Complejos Multiproteicos/genética , Operón , Antitoxinas/química , Antitoxinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína
16.
Mol Microbiol ; 112(4): 1339-1349, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400173

RESUMEN

Bacteria undergoing nutrient starvation induce the ubiquitous stringent response, resulting in gross physiological changes that reprograms cell metabolism from fast to slow growth. The stringent response is mediated by the secondary messengers pppGpp and ppGpp collectively referred to as (p)ppGpp or 'alarmone'. In Escherichia coli, two paralogs, RelA and SpoT, synthesize (p)ppGpp. RelA is activated by amino acid starvation, whereas SpoT, which can also degrade (p)ppGpp, responds to fatty acid (FA), carbon and phosphate starvation. Here, we discover that FA starvation leads to rapid activation of RelA and reveal the underlying mechanism. We show that FA starvation leads to depletion of lysine that, in turn, leads to the accumulation of uncharged tRNALys and activation of RelA. SpoT was also activated by FA starvation but to a lower level and with a delayed kinetics. Next, we discovered that pyruvate, a precursor of lysine, is depleted by FA starvation. We also propose a mechanism that explains how FA starvation leads to pyruvate depletion. Together our results raise the possibility that RelA may be a major player under many starvation conditions previously thought to depend principally on SpoT. Interestingly, FA starvation provoked a ~100-fold increase in relA dependent ampicillin tolerance.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , GTP Pirofosfoquinasa/metabolismo , Ácido Pirúvico/metabolismo , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , GTP Pirofosfoquinasa/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Tetrafosfato/metabolismo , Ligasas/metabolismo , Lisina/metabolismo , Pirofosfatasas/metabolismo , ARN de Transferencia/metabolismo
17.
Mol Microbiol ; 111(1): 221-236, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315706

RESUMEN

Type II toxin-antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res-xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES-Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix-turn-helix DNA-binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP-ribosylating enzymes such as diphtheria toxin but has an atypical NAD+ -binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli/crecimiento & desarrollo , NAD/metabolismo , Photorhabdus/genética , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación Proteica , Multimerización de Proteína , Pseudomonas putida/genética
18.
Nucleic Acids Res ; 46(21): e128, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30124998

RESUMEN

Gene arrays and operons that encode functionally linked proteins form the most basic unit of transcriptional regulation in bacteria. Rules that govern the order and orientation of genes in these systems have been defined; however, these were based on a small set of genomes that may not be representative. The growing availability of large genomic datasets presents an opportunity to test these rules, to define the full range and diversity of these systems, and to understand their evolution. Here we present SLING, a tool to Search for LINked Genes by searching for a single functionally essential gene, along with its neighbours in a rule-defined proximity (https://github.com/ghoresh11/sling/wiki). Examining this subset of genes enables us to understand the basic diversity of these genetic systems in large datasets. We demonstrate the utility of SLING on a clinical collection of enteropathogenic Escherichia coli for two relevant operons: toxin antitoxin (TA) systems and RND efflux pumps. By examining the diversity of these systems, we gain insight on distinct classes of operons which present variable levels of prevalence and ability to be lost or gained. The importance of this analysis is not limited to TA systems and RND pumps, and can be expanded to understand the diversity of many other relevant gene arrays.


Asunto(s)
Proteínas Bacterianas/genética , Biología Computacional/métodos , Genes Bacterianos/genética , Almacenamiento y Recuperación de la Información/métodos , Operón/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Bases de Datos Genéticas , Genoma Bacteriano/genética , Genómica/métodos , Internet , Reproducibilidad de los Resultados
19.
Nucleic Acids Res ; 45(8): 4972-4983, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28334932

RESUMEN

Toxin-antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a ß-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of ß-strand ß3, thereby flipping the catalytically important Arg64 out of the active site.


Asunto(s)
Antitoxinas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Complejos Multiproteicos/química , Conformación Proteica en Lámina beta , Ribonucleasas/química , Ribonucleasas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Topoisomerasa de ADN IV/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/genética , Unión Proteica , Multimerización de Proteína , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química , Ribosomas/genética , Vibrio cholerae/química , Vibrio cholerae/enzimología
20.
Mol Microbiol ; 104(5): 781-792, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28266056

RESUMEN

Antitoxins encoded by type II toxin - antitoxin (TA) modules neutralize cognate toxins by direct protein - protein contact and in addition, regulate TA operon transcription by binding to operators in the promoter regions. On top of the simple negative feed-back regulation, canonical type II TA operons are regulated by a mechanism called 'Conditional Cooperativity'(CC). In CC, the cellular toxin:antitoxin (T:A) ratio controls the transcription-rate such that low T:A ratios favour repression and high T:A ratios favour de-repression of TA operon transcription. Here a new molecular mechanism that secures selective synthesis of antitoxin in the presence of excess toxin was unravelled. The hicAB locus of E. coli K-12 encodes HicA mRNase and HicB antitoxin. It was shown that hicAB is transcribed by two promoters, an upstream one that is activated by CRP-cAMP and competence factor Sxy and a downstream one that is autorepressed solely by HicB. Excess HicA destabilizes the HicB•operator complex in vitro and consistently, activates hicAB transcription in vivo. Remarkably, the hicAB transcript synthesized from the HicB-controlled promoter produces HicB but not HicA. Thus, the HicA-mediated derepression of hicAB transcription provides a mechanism that conditionally and selectively stimulates synthesis of HicB antitoxin under conditions of excess HicA toxin.


Asunto(s)
Antitoxinas/biosíntesis , Toxinas Bacterianas/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Antitoxinas/genética , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Operón , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA