Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Stem Cells ; 36(3): 446-457, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235178

RESUMEN

During bone marrow transplantation, hematopoietic stem and progenitor cells (HSPCs) respond to signals from the hematopoietic microenvironment by coordinately activating molecular pathways through Rho GTPases, including Rac. We have previously shown that deletion of Vav1, a hematopoietic-specific activator of Rac, compromises engraftment of transplanted adult HSPCs without affecting steady-state hematopoiesis in adult animals. Here, we show that Vav1-/- fetal HSPCs can appropriately seed hematopoietic tissues during ontogeny but cannot engraft into lethally irradiated recipients. We demonstrate that the engraftment defect of Vav1-/- HSPCs is abrogated in the absence of irradiation and demonstrate that Vav1 is critical for the response of HSPCs to the proinflammatory cytokine interleukin-11 (IL-11) that is upregulated in the marrow of irradiated recipients. Vav1-/- HSPCs display abnormal proliferative responses to IL-11 in vitro and dysregulated activation of pathways critical to engraftment of HSPCs. The engraftment of Vav1-/- HSPCs can be partially rescued in irradiated recipients treated with an anti-IL-11 antibody. These data suggest that HSPCs may respond to different functional demands by selective usage of the IL-11-Vav-Rac pathway, contextualizing further the recent view that HSPCs capable of reconstituting the blood system following transplantation might be distinct from those supporting hematopoiesis during homeostatic conditions. Stem Cells 2018; 36:446-457.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Interleucina-11/farmacología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Células Madre/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Hematopoyesis/genética , Ratones , Proteínas Proto-Oncogénicas c-vav/genética , Células Madre/efectos de los fármacos , Células Madre/fisiología
2.
Blood ; 127(16): 1967-75, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26932803

RESUMEN

Cytoskeletal remodeling of hematopoietic stem and progenitor cells (HSPCs) is essential for homing to the bone marrow (BM). The Ras-related C3 botulinum toxin substrate (Rac)/cell division control protein 42 homolog (CDC42) effector p21-activated kinase (Pak2) has been implicated in HSPC homing and engraftment. However, the molecular pathways mediating Pak2 functions in HSPCs are unknown. Here, we demonstrate that both Pak2 kinase activity and its interaction with the PAK-interacting exchange factor-ß (ß-Pix) are required to reconstitute defective ITALIC! Pak2 (ITALIC! Δ/Δ)HSPC homing to the BM. Pak2 serine/threonine kinase activity is required for stromal-derived factor-1 (SDF1α) chemokine-induced HSPC directional migration, whereas Pak2 interaction with ß-Pix is required to regulate the velocity of HSPC migration and precise F-actin assembly. Lack of SDF1α-induced filopodia and associated abnormal cell protrusions seen in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs were rescued by wild-type (WT) Pak2 but not by a Pak2-kinase dead mutant (KD). Expression of a ß-Pix interaction-defective mutant of Pak2 rescued filopodia formation but led to abnormal F-actin bundles. Although CDC42 has previously been considered an upstream regulator of Pak2, we found a paradoxical decrease in baseline activation of CDC42 in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs, which was rescued by expression of Pak2-WT but not by Pak2-KD; defective homing of ITALIC! Pak2-deleted HSPCs was rescued by constitutive active CDC42. These data demonstrate that both Pak2 kinase activity and its interaction with ß-Pix are essential for HSPC filopodia formation, cytoskeletal integrity, and homing via activation of CDC42. Taken together, we provide mechanistic insights into the role of Pak2 in HSPC migration and homing.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/fisiología , Animales , Comunicación Celular , Movimiento Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Nicho de Células Madre/genética , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
3.
N Engl J Med ; 371(15): 1407-17, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25295500

RESUMEN

BACKGROUND: In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus-based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS: We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS: All patients received bone marrow-derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS: This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.).


Asunto(s)
Gammaretrovirus/genética , Terapia Genética , Vectores Genéticos , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Animales , Antígenos CD34 , ADN Complementario/uso terapéutico , Expresión Génica , Silenciador del Gen , Terapia Genética/efectos adversos , Humanos , Lactante , Subunidad gamma Común de Receptores de Interleucina/genética , Masculino , Ratones , Mutación , Linfocitos T/inmunología , Transducción Genética , Transgenes/fisiología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunología
4.
Blood ; 124(5): 780-90, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-24891322

RESUMEN

The myelodysplastic syndromes (MDSs) include a spectrum of stem cell malignancies characterized by an increased risk of developing acute myeloid leukemia. Heterozygous loss of chromosome 5q (del[5q]) is the most common cytogenetic abnormality in MDS. DIAPH1 is localized to 5q31 and encodes one of the formin proteins, mDia1, which is involved in linear actin polymerization. Mice with mDia1 deficiency develop hematologic features with age mimicking human myeloid neoplasm, but its role in the pathogenesis of MDS is unclear. Here we report that mDia1 heterozygous and knockout mice develop MDS phenotypes with age. In these mice, CD14 was aberrantly overexpressed on granulocytes in a cell-autonomous manner, leading to a hypersensitive innate immune response to lipopolysaccharide (LPS) stimuli through CD14/Toll-like receptor 4 signaling. Chronic stimulation with LPS accelerated the development of MDS in mDia1 heterozygous and knockout mice that can be rescued by lenalidomide. Similar findings of CD14 overexpression were observed on the bone marrow granulocytes of del(5q) MDS patients. Mechanistically, mDia1 deficiency led to a downregulation of membrane-associated genes and a specific upregulation of CD14 messenger RNA in granulocytes, but not in other lineages. These results underscore the significance of mDia1 heterozygosity in deregulated innate immune responses in del(5q) MDS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 5 , Regulación de la Expresión Génica , Granulocitos/metabolismo , Heterocigoto , Inmunidad Innata , Receptores de Lipopolisacáridos/biosíntesis , Síndromes Mielodisplásicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Femenino , Forminas , Granulocitos/inmunología , Granulocitos/patología , Humanos , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Noqueados , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/patología , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
5.
Blood ; 121(13): 2474-82, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23335370

RESUMEN

The p21-activated kinases (Paks) are serine/threonine kinases that are major effectors of the Rho guanosine 5'\x{2011}triphosphatase, Rac, and Cdc42. Rac and Cdc42 are known regulators of hematopoietic stem and progenitor cell (HSPC) function, however, a direct role for Paks in HSPCs has yet to be elucidated. Lin(-)Sca1(+)c-kit(+) (LSK) cells from wild-type mice were transduced with retrovirus expressing Pak inhibitory domain (PID), a well-characterized inhibitor of Pak activation. Defects in marrow homing and in vitro cell migration, assembly of the actin cytoskeleton, proliferation, and survival were associated with engraftment failure of PID-LSK. The PID-LSK demonstrated decreased phosphorylation of extracellular signal-regulated kinase (ERK), whereas constitutive activation of ERK in these cells led to rescue of hematopoietic progenitor cell proliferation in vitro and partial rescue of Pak-deficient HSPC homing and engraftment in vivo. Using conditional knock-out mice, we demonstrate that among group A Paks, Pak2(-/-) HSPC show reduced homing to the bone marrow and altered cell shape similar to PID-LSK cells in vitro and are completely defective in HSPC engraftment. These data demonstrate that Pak proteins are key components of multiple engraftment-associated HSPC functions and play a direct role in activation of ERK in HSPCs, and that Pak2 is specifically essential for HSPC engraftment.


Asunto(s)
Movimiento Celular/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Quinasas p21 Activadas/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/fisiología
6.
Cancer Cell ; 12(5): 467-78, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17996650

RESUMEN

Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disease (MPD) initiated by expression of the p210-BCR-ABL fusion protein. We demonstrate in a murine model of p210-BCR-ABL-induced MPD that gene targeting of Rac1 and Rac2 significantly delays or abrogates disease development. Attenuation of the disease phenotype is associated with severely diminished p210-BCR-ABL-induced downstream signaling in primary hematopoietic cells. We utilize NSC23766, a small molecule antagonist of Rac activation, to validate biochemically and functionally Rac as a molecular target in both a relevant animal model and in primary human CML cells in vitro and in a xenograft model in vivo, including in Imatinib-resistant p210-BCR-ABL disease. These data demonstrate that Rac is an additional therapeutic target in p210-BCR-ABL-mediated MPD.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Proteínas de Unión al GTP rac/fisiología , Aminoquinolinas/farmacología , Animales , Antígenos CD34/biosíntesis , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Ratones , Trastornos Mieloproliferativos/terapia , Trasplante de Neoplasias , Fenotipo , Pirimidinas/farmacología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína RCA2 de Unión a GTP
7.
Blood ; 119(25): 6118-27, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22461493

RESUMEN

To understand the role of cytoskeleton and membrane signaling molecules in erythroblast enucleation, we developed a novel analysis protocol of multiparameter high-speed cell imaging in flow. This protocol enabled us to observe F-actin and phosphorylated myosin regulatory light chain (pMRLC) assembled into a contractile actomyosin ring (CAR) between nascent reticulocyte and nucleus, in a population of enucleating erythroblasts. CAR formation and subsequent enucleation were not affected in murine erythroblasts with genetic deletion of Rac1 and Rac2 GTPases because of compensation by Rac3. Pharmacologic inhibition or genetic deletion of all Rac GTPases altered the distribution of F-actin and pMRLC and inhibited enucleation. Erythroblasts treated with NSC23766, cytochalasin-D, colchicine, ML7, or filipin that inhibited Rac activity, actin or tubulin polymerization, MRLC phosphorylation, or lipid raft assembly, respectively, exhibited decreased enucleation efficiency, as quantified by flow cytometry. As assessed by high-speed flow-imaging analysis, colchicine inhibited erythroblast polarization, implicating microtubules during the preparatory stage of enucleation, whereas NSC23766 led to absence of lipid raft assembly in the reticulocyte-pyrenocyte border. In conclusion, enucleation is a multistep process that resembles cytokinesis, requiring establishment of cell polarity through microtubule function, followed by formation of a contractile actomyosin ring, and coalescence of lipid rafts between reticulocyte and pyrenocyte.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/fisiología , Eritroblastos/fisiología , Reticulocitos/fisiología , Actinas/metabolismo , Animales , Transporte Biológico/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Núcleo Celular/fisiología , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Eritroblastos/citología , Eritroblastos/ultraestructura , Eritropoyesis/genética , Eritropoyesis/fisiología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/fisiología , Reticulocitos/citología , Reticulocitos/metabolismo , Reticulocitos/ultraestructura , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/fisiología
8.
Blood ; 119(23): 5449-57, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22371882

RESUMEN

Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs.


Asunto(s)
Anemia de Fanconi/genética , Terapia Genética/métodos , Hematopoyesis , Células Madre Pluripotentes Inducidas/citología , Animales , Células Cultivadas , Daño del ADN , Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Blood ; 118(19): 5235-45, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21940819

RESUMEN

The Rac family of small Rho GTPases coordinates diverse cellular functions in hematopoietic cells including adhesion, migration, cytoskeleton rearrangements, gene transcription, proliferation, and survival. The integrity of Rac signaling has also been found to critically regulate cellular functions in the initiation and maintenance of hematopoietic malignancies. Using an in vivo gene targeting approach, we demonstrate that Rac2, but not Rac1, is critical to the initiation of acute myeloid leukemia in a retroviral expression model of MLL-AF9 leukemogenesis. However, loss of either Rac1 or Rac2 is sufficient to impair survival and growth of the transformed MLL-AF9 leukemia. Rac2 is known to positively regulate expression of Bcl-2 family proteins toward a prosurvival balance. We demonstrate that disruption of downstream survival signaling through antiapoptotic Bcl-2 proteins is implicated in mediating the effects of Rac2 deficiency in MLL-AF9 leukemia. Indeed, overexpression of Bcl-xL is able to rescue the effects of Rac2 deficiency and MLL-AF9 cells are exquisitely sensitive to direct inhibition of Bcl-2 family proteins by the BH3-mimetic, ABT-737. Furthermore, concurrent exposure to NSC23766, a small-molecule inhibitor of Rac activation, increases the apoptotic effect of ABT-737, indicating the Rac/Bcl-2 survival pathway may be targeted synergistically.


Asunto(s)
Leucemia Bifenotípica Aguda/tratamiento farmacológico , Leucemia Bifenotípica Aguda/metabolismo , Neuropéptidos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Aminoquinolinas/farmacología , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Bifenotípica Aguda/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Neuropéptidos/deficiencia , Neuropéptidos/genética , Nitrofenoles/farmacología , Piperazinas/farmacología , Pirimidinas/farmacología , Transducción de Señal , Sulfonamidas/farmacología , Trasplante Heterólogo , Proteína bcl-X/genética , Proteínas de Unión al GTP rac/deficiencia , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1 , Proteína RCA2 de Unión a GTP
10.
Cell Stem Cell ; 28(5): 833-845.e5, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33513358

RESUMEN

Severe congenital neutropenia (SCN) is a life-threatening disorder most often caused by dominant mutations of ELANE that interfere with neutrophil maturation. We conducted a pooled CRISPR screen in human hematopoietic stem and progenitor cells (HSPCs) that correlated ELANE mutations with neutrophil maturation potential. Highly efficient gene editing of early exons elicited nonsense-mediated decay (NMD), overcame neutrophil maturation arrest in HSPCs from ELANE-mutant SCN patients, and produced normal hematopoietic engraftment function. Conversely, terminal exon frameshift alleles that mimic SCN-associated mutations escaped NMD, recapitulated neutrophil maturation arrest, and established an animal model of ELANE-mutant SCN. Surprisingly, only -1 frame insertions or deletions (indels) impeded neutrophil maturation, whereas -2 frame late exon indels repressed translation and supported neutrophil maturation. Gene editing of primary HSPCs allowed faithful identification of variant pathogenicity to clarify molecular mechanisms of disease and encourage a universal therapeutic approach to ELANE-mutant neutropenia, returning normal neutrophil production and preserving HSPC function.


Asunto(s)
Elastasa de Leucocito , Neutropenia , Animales , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Edición Génica , Humanos , Elastasa de Leucocito/genética , Mutación/genética , Neutropenia/genética , Virulencia
11.
Nat Commun ; 12(1): 1334, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637765

RESUMEN

To understand the mechanisms that mediate germline genetic leukemia predisposition, we studied the inherited ribosomopathy Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with high risk of myeloid malignancies at an early age. To define the mechanistic basis of clonal hematopoiesis in SDS, we investigate somatic mutations acquired by patients with SDS followed longitudinally. Here we report that multiple independent somatic hematopoietic clones arise early in life, most commonly harboring heterozygous mutations in EIF6 or TP53. We show that germline SBDS deficiency establishes a fitness constraint that drives selection of somatic clones via two distinct mechanisms with different clinical consequences. EIF6 inactivation mediates a compensatory pathway with limited leukemic potential by ameliorating the underlying SDS ribosome defect and enhancing clone fitness. TP53 mutations define a maladaptive pathway with enhanced leukemic potential by inactivating tumor suppressor checkpoints without correcting the ribosome defect. Subsequent development of leukemia was associated with acquisition of biallelic TP53 alterations. These results mechanistically link leukemia predisposition to germline genetic constraints on cellular fitness, and provide a rational framework for clinical surveillance strategies.


Asunto(s)
Hematopoyesis Clonal/genética , Hematopoyesis Clonal/fisiología , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/metabolismo , Adolescente , Adulto , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/metabolismo , Niño , Preescolar , Factores Eucarióticos de Iniciación/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Ribosomas/genética , Proteína p53 Supresora de Tumor/genética , Adulto Joven
12.
Am J Sports Med ; 43(2): 320-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25549633

RESUMEN

BACKGROUND: Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. HYPOTHESIS: The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. STUDY DESIGN: Controlled laboratory study. METHODS: Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. RESULTS: After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. CONCLUSION: These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. CLINICAL RELEVANCE: Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirugía , Células Madre Mesenquimatosas/citología , Cicatrización de Heridas , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Articulación de la Rodilla/cirugía , Masculino , Suturas , Porcinos , Porcinos Enanos
13.
Methods Mol Biol ; 1185: 287-309, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25062637

RESUMEN

Genetic modification of cells using retroviral vectors is the method of choice when the cell population is difficult to transfect and/or requires persistent transgene expression in progeny cells. There are innumerable potential applications for these procedures in laboratory research and clinical therapeutic interventions. One paradigmatic example is the genetic modification of hematopoietic stem and progenitor cells (HSPCs). These are rare nucleated cells which reside in a specialized microenvironment within the bone marrow, and have the potential to self-renew and/or differentiate into all hematopoietic lineages. Due to their enormous regenerative capacity in steady state or under stress conditions these cells are routinely used in allogeneic bone marrow transplantation to reconstitute the hematopoietic system in patients with metabolic, inflammatory, malignant, and other hematologic disorders. For patients lacking a matched bone marrow donor, gene therapy of autologous hematopoietic stem cells has proven to be an alternative as highlighted recently by several successful gene therapy trials. Genetic modification of HSPCs using retrovirus vectors requires ex vivo manipulation to efficiently introduce the new genetic material into cells (transduction). Optimal culture conditions are essential to facilitate this process while preserving the stemness of the cells. The most frequently used retroviral vector systems for the genetic modifications of HSPCs are derived either from Moloney murine leukemia-virus (Mo-MLV) or the human immunodeficiency virus-1 (HIV-1) and are generally termed according to their genus gamma-retroviral (γ-RV) or lentiviral vectors (LV), respectively. This chapter describes in a step-by-step fashion some techniques used to produce research grade vector supernatants and to obtain purified murine or human hematopoietic stem cells for transduction, as well as follow-up methods for analysis of transduced cell populations.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Retroviridae/genética , Transducción Genética/métodos , Animales , Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Fosfatos de Calcio/química , Línea Celular , Separación Celular , Fluorouracilo/farmacología , Vectores Genéticos/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Polietileneimina/química , Transfección
14.
Cancer Res ; 68(15): 6171-80, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18676840

RESUMEN

Retroviral-mediated delivery of the P140K mutant O(6)-methylguanine-DNA methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) has been proposed as a means to protect against dose-limiting myelosuppressive toxicity ensuing from chemotherapy combining O(6)-alkylating agents (e.g., temozolomide) with pseudosubstrate inhibitors (such as O(6)-benzylguanine) of endogenous MGMT. Because detoxification of O(6)-alkylguanine adducts by MGMT is stoichiometric, it has been suggested that higher levels of MGMT will afford better protection to gene-modified HSC. However, accomplishing this goal would potentially be in conflict with current efforts in the gene therapy field, which aim to incorporate weaker enhancer elements to avoid insertional mutagenesis. Using a panel of self-inactivating gamma-retroviral vectors that express a range of MGMT(P140K) activity, we show that MGMT(P140K) expression by weaker cellular promoter/enhancers is sufficient for in vivo protection/selection following treatment with O(6)-benzylguanine/temozolomide. Conversely, the highest level of MGMT(P140K) activity did not promote efficient in vivo protection despite mediating detoxification of O(6)-alkylguanine adducts. Moreover, very high expression of MGMT(P140K) was associated with a competitive repopulation defect in HSC. Mechanistically, we show a defect in cellular proliferation associated with elevated expression of MGMT(P140K), but not wild-type MGMT. This proliferation defect correlated with increased localization of MGMT(P140K) to the nucleus/chromatin. These data show that very high expression of MGMT(P140K) has a deleterious effect on cellular proliferation, engraftment, and chemoprotection. These studies have direct translational relevance to ongoing clinical gene therapy studies using MGMT(P140K), whereas the novel mechanistic findings are relevant to the basic understanding of DNA repair by MGMT.


Asunto(s)
Células Madre Hematopoyéticas/enzimología , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Animales , Ensayo Cometa , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Retroviridae/genética , Transducción Genética
15.
Blood ; 109(3): 1257-64, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16990606

RESUMEN

Neutrophils are critical in the inflammatory process by moving rapidly to tissue sites of inflammation. Members of the small Rho GTPase family, Rac1, Rac2, CDC42, and RhoA, are central regulators of cell migration by cytoskeleton rearrangement. The role of Rac1 in neutrophil migration related to inflammatory processes has remained elusive and has yet to be determined in physiologic in vivo models. We previously demonstrated a role for Rac1 in tail retraction. Here, we present evidence that Rac1-mediated uropod formation may be due to crosstalk with a related Rho GTPase RhoA. To assess the physiologic relevance of these findings, we used adoptive transfer of Rac1flox/flox bone marrow cells which allows postengraftment in vivo deletion of Rac1 only in blood cells. We examined the specific role of Rac1 in neutrophil migration into the lung during the inflammatory process induced by formyl-methionyl-leucyl-phenylalanine exposure. The loss of Rac1 activity in neutrophils is associated with a significant decreased neutrophil recruitment into lung alveolar and attenuation of emphysematous lesions. Overall, this study suggests that Rac1 is a physiologic integrator of signals for neutrophil recruitment into lung tissue during an inflammatory response.


Asunto(s)
Pulmón/patología , Infiltración Neutrófila , Proteína de Unión al GTP rac1/fisiología , Animales , Células Sanguíneas , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Enfisema/patología , Inflamación/inducido químicamente , Ratones , Transducción de Señal , Transducción Genética , Proteína de Unión al GTP rac1/genética
16.
Nat Immunol ; 5(7): 744-51, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15170212

RESUMEN

Despite having a high degree of sequence similarity, the Rho guanosine triphosphatases Rac1 and Rac2 regulate distinct functions in neutrophils. Here we demonstrate that the unique Rac2 localization and functions in neutrophils are regulated by two separate C-terminal motifs, the hypervariable domain and aspartic acid 150, one of which has not previously been linked to the function of Rho GTPases. In addition, we show an unexpected dependence of Rac1 localization on Rac2 activity in these same cells, demonstrating a degree of crosstalk between two closely related Rho GTPases. Thus, we have defined specific sequences in Rac that specify subcellular localization and determine the specificity of Rac2 in neutrophil chemotaxis and superoxide generation.


Asunto(s)
Actinas/metabolismo , Ácido Aspártico/metabolismo , Quimiotaxis , Neutrófilos/citología , Neutrófilos/metabolismo , Superóxidos/metabolismo , Proteínas de Unión al GTP rac/química , Proteínas de Unión al GTP rac/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Ácido Aspártico/genética , Polaridad Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Transporte de Proteínas , Especificidad por Sustrato , Proteínas de Unión al GTP rac/deficiencia , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína RCA2 de Unión a GTP
17.
Science ; 302(5644): 445-9, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-14564009

RESUMEN

The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated recipient mice. In contrast, Rac2, but not Rac1, regulates superoxide production and directed migration in neutrophils, and in each cell type, the two GTPases play distinct roles in actin organization, cell survival, and proliferation. Thus, Rac1 and Rac2 regulate unique aspects of hematopoietic development and function.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Neutrófilos/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Trasplante de Médula Ósea , Adhesión Celular , Ciclo Celular , Movimiento Celular , Tamaño de la Célula , Ensayo de Unidades Formadoras de Colonias , Ciclina D1/metabolismo , Fibronectinas/metabolismo , Hematopoyesis , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Recombinación Genética , Transducción de Señal , Factor de Células Madre/farmacología , Superóxidos/metabolismo , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/genética , Proteína RCA2 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA